Experimental studies of reciprocating liquid immersion cooling for 18650 lithium-ion battery under fast charging conditions

被引:27
|
作者
Li, Yang [1 ]
Bai, Minli [1 ]
Zhou, Zhifu [2 ]
Wu, Wei-Tao [3 ]
Lv, Jizu [1 ]
Gao, Linsong [1 ]
Huang, Heng [1 ]
Li, Yubai [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116023, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Thermal management; Fast charging; Two-phase heat transfer; Immersion cooling; THERMAL MANAGEMENT-SYSTEM; STRUCTURE OPTIMIZATION; TEMPERATURE; PERFORMANCE; FLOW; CELL; POSTMORTEM; MECHANISM; BEHAVIOR; RUNAWAY;
D O I
10.1016/j.est.2023.107177
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this study, the reciprocating liquid immersion cooling has been proposed and tested for cooling the cylindrical lithium-ion battery (LIB) under fast charging conditions. First, the temperature responses of LIB under fast charging conditions with liquid immersion cooling and natural convection are compared. Experimental results show that the reciprocating liquid immersion cooling possesses better heat dissipation performance than natural convection, not only can precisely control the cell temperature to around 50 degrees C during fast charging, but also can improve the cell temperature uniformity. Meanwhile, the reciprocating system enables rapid cooling of the battery during the resting process, which consequently achieves asymmetric control of high-temperature charging and room temperature discharging. Then, the effects of different charging rates and different charging protocols are explored, and the high-speed photography is used to observe and record the liquid-gas phase transition phenomenon under three different charging rates. Finally, the temperature response and en-ergy consumption analysis of LIB in the fast-charging process with three different assembly schemes are inves-tigated. This study provides preliminary proof for the advantage of applying liquid immersion cooling for LIB under fast charging.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Experimental Analysis of Thermal Behavior of a Lithium-Ion Battery using Constant Voltage under Different Cooling Conditions
    Jayamohan, Dhanaselvam
    Venkatasalam, Rukkumani
    Thangam, Chinnadurai
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (08):
  • [42] Thermal runaway detection of cylindrical 18650 lithium-ion battery under quasi-static loading conditions
    Sheikh, Muhammad
    Elmarakbi, Ahmed
    Elkady, Mustafa
    JOURNAL OF POWER SOURCES, 2017, 370 : 61 - 70
  • [43] Effects of Fast Charging Modes on Thermal Performance of Lithium-Ion Battery
    Wang, Wentao
    Wang, Yanan
    Ni, Ruke
    Xie, Zongfa
    ENERGY TECHNOLOGY, 2022, 10 (11)
  • [44] Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery
    Wu, Haixia
    Guo, Kailu
    CHINESE CHEMICAL LETTERS, 2024, 35 (10)
  • [45] Iodized polyacrylonitrile as fast-charging anode for lithium-ion battery
    Haixia Wu
    Kailu Guo
    Chinese Chemical Letters, 2024, 35 (10) : 37 - 38
  • [46] Impact of Fast Charging on Lithium-ion Battery in Electric Vehicle Application
    Nuamkoksung, Poramet
    Buayai, Krittidet
    Kongjeen, Yuttana
    Bhumkittipich, Krischonme
    Kerdchen, Kaan
    Mithulananthan, Nadarajah
    2020 8TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2020,
  • [47] Thermal Management of Lithium-ion Battery Pack with Liquid Cooling
    Saw, L. H.
    Tay, A. A. O.
    Zhang, L. Winston
    2015 31ST ANNUAL SEMICONDUCTOR THERMAL MEASUREMENT, MODELING & MANAGEMENT SYMPOSIUM (SEMI-THERM), 2015, : 298 - 302
  • [48] Validation of a data-driven fast numerical model to simulate the immersion cooling of a lithium-ion battery pack
    Solai, Elie
    Guadagnini, Maxime
    Beaugendre, Héloïse
    Daccord, Rémi
    Congedo, Pietro
    Energy, 2022, 249
  • [49] Validation of a data-driven fast numerical model to simulate the immersion cooling of a lithium-ion battery pack
    Solai, Elie
    Guadagnini, Maxime
    Beaugendre, Heloise
    Daccord, Remi
    Congedo, Pietro
    ENERGY, 2022, 249
  • [50] Mechanism of failure behaviour and analysis of 18650 lithium-ion battery under dynamic loadings
    Huang, Jiaqi
    Shen, Weixiang
    Lu, Guoxing
    ENGINEERING FAILURE ANALYSIS, 2023, 153