Deep learning for brain age estimation: A systematic review

被引:67
作者
Tanveer, M. [1 ]
Ganaie, M. A. [2 ]
Beheshti, Iman [3 ]
Goel, Tripti [4 ]
Ahmad, Nehal [1 ,5 ]
Lai, Kuan-Ting [6 ]
Huang, Kaizhu [7 ]
Zhang, Yu-Dong [8 ]
Del Ser, Javier [9 ,10 ]
Lin, Chin-Teng [11 ]
机构
[1] Indian Inst Technol Indore, Dept Math, Indore 453552, India
[2] Univ Michigan, Dept Robot, Ann Arbor, MI 48109 USA
[3] Univ Manitoba, Max Rady Coll Med, Rady Fac Hlth Sci, Dept Human Anat & Cell Sci, Winnipeg, MB, Canada
[4] Natl Inst Technol Silchar, Biomed Imaging Lab, Silchar 788010, Assam, India
[5] Natl Taipei Univ Technol, Dept Elect Engn & Comp Sci, Taipei, Taiwan
[6] Natl Taipei Univ Technol, Dept Elect Engn, Taipei, Taiwan
[7] Duke Kunshan Univ, Data Sci Res Ctr, Suzhou, Peoples R China
[8] Univ Leicester, Sch Comp & Math Sci, Leicester LE1 7RH, England
[9] Basque Res & Technol Alliance BRTA, TECNALIA, Derio 48160, Spain
[10] Univ Basque Country UPV EHU, Bilbao 48013, Spain
[11] Univ Technol Sydney, Fac Engn & Informat Technol, Sch Comp Sci, Sydney, Australia
关键词
Brain age estimation; Neuroimaging; Machine learning; Deep learning; Deep neural networks; REGRESSION; MACHINE; EXERCISE; NETWORK;
D O I
10.1016/j.inffus.2023.03.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Over the years, Machine Learning models have been successfully employed on neuroimaging data for accurately predicting brain age. Deviations from the healthy brain aging pattern are associated with the accelerated brain aging and brain abnormalities. Hence, efficient and accurate diagnosis techniques are required to elicit accurate brain age estimations. Several contributions have been reported in the past for this purpose, resorting to different data-driven modeling methods. Recently, deep neural networks (also referred to as deep learning ) have become prevalent in manifold neuroimaging studies, including brain age estimation. In this review, we offer a comprehensive analysis of the literature related to the adoption of deep learning for brain age estimation with neuroimaging data. We detail and analyze different deep learning architectures used for this application, pausing at research works published to date quantitatively exploring their application. We also examine different brain age estimation frameworks, comparatively exposing their advantages and weaknesses. Finally, the review concludes with an outlook towards future directions that should be followed by prospective studies. The ultimate goal of this paper is to establish a common and informed reference for newcomers and experienced researchers willing to approach brain age estimation by using deep learning models.
引用
收藏
页码:130 / 143
页数:14
相关论文
共 101 条
[1]   Deep Learning and Multiplex Networks for Accurate Modeling of Brain Age [J].
Amoroso, Nicola ;
La Rocca, Marianna ;
Bellantuono, Loredana ;
Diacono, Domenico ;
Fanizzi, Annarita ;
Lella, Eufemia ;
Lombardi, Angela ;
Maggipinto, Tommaso ;
Monaco, Alfonso ;
Tangaro, Sabina ;
Bellotti, Roberto .
FRONTIERS IN AGING NEUROSCIENCE, 2019, 11
[2]   Machine learning for brain age prediction: Introduction to methods and clinical applications [J].
Baecker, Lea ;
Garcia-Dias, Rafael ;
Vieira, Sandra ;
Scarpazza, Cristina ;
Mechelli, Andrea .
EBIOMEDICINE, 2021, 72
[3]   Predicting Brain Age at Slice Level: Convolutional Neural Networks and Consequences for Interpretability [J].
Ballester, Pedro L. ;
da Silva, Laura Tomaz ;
Marcon, Matheus ;
Esper, Nathalia Bianchini ;
Frey, Benicio N. ;
Buchweitz, Augusto ;
Meneguzzi, Felipe .
FRONTIERS IN PSYCHIATRY, 2021, 12
[4]   Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI [J].
Barredo Arrieta, Alejandro ;
Diaz-Rodriguez, Natalia ;
Del Ser, Javier ;
Bennetot, Adrien ;
Tabik, Siham ;
Barbado, Alberto ;
Garcia, Salvador ;
Gil-Lopez, Sergio ;
Molina, Daniel ;
Benjamins, Richard ;
Chatila, Raja ;
Herrera, Francisco .
INFORMATION FUSION, 2020, 58 :82-115
[5]  
Beheshti I., 2022, NEURAL COMPUT APPL, P1, DOI [10.1109/JBHI.2022.3147524, DOI 10.1109/JBHI.2022.3147524]
[6]   Predicting Brain Age Using Machine Learning Algorithms: A Comprehensive Evaluation [J].
Beheshti, Iman ;
Ganaie, M. A. ;
Paliwal, Vardhan ;
Rastogi, Aryan ;
Razzak, Imran ;
Tanveer, M. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (04) :1432-1440
[7]   Gray Matter and White Matter Abnormalities in Temporal Lobe Epilepsy Patients with and without Hippocampal Sclerosis [J].
Beheshti, Iman ;
Sone, Daichi ;
Farokhian, Farnaz ;
Maikusa, Norihide ;
Matsuda, Hiroshi .
FRONTIERS IN NEUROLOGY, 2018, 9
[8]   Predicting brain age with complex networks: From adolescence to adulthood [J].
Bellantuono, Loredana ;
Marzano, Luca ;
La Rocca, Marianna ;
Duncan, Dominique ;
Lombardi, Angela ;
Maggipinto, Tommaso ;
Monaco, Alfonso ;
Tangaro, Sabina ;
Amoroso, Nicola ;
Bellotti, Roberto .
NEUROIMAGE, 2021, 225
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   Graph Transformer Geometric Learning of Brain Networks Using Multimodal MR Images for Brain Age Estimation [J].
Cai, Hongjie ;
Gao, Yue ;
Liu, Manhua .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (02) :456-466