THE SPECTRAL DENSITY OF HARDY KERNEL MATRICES

被引:1
作者
Pushnitski, Alexander [1 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
关键词
Hardy kernel; Toeplitz matrix; spectral density; absolutely continuous spectrum; HILBERT; OPERATORS;
D O I
10.7900/jot.2021apr06.2320
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider infinite matrices obtained by restricting Hardy in-tegral kernels to natural numbers. For a suitable class of Hardy kernels we describe the absolutely continuous spectrum, the essential spectrum and the asymptotic spectral density of these matrices.
引用
收藏
页码:3 / 21
页数:19
相关论文
共 17 条
[1]  
Bottcher A., 1999, INTRO LARGE TRUNCATE
[2]  
BREVIG O.F., ANN I FOURIER
[3]   Sharp norm estimates for composition operators and Hilbert-type inequalities [J].
Brevig, Ole Fredrik .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (06) :965-978
[4]   ON THE SPECTRUM OF THE BERGMAN-HILBERT MATRIX-II [J].
DAVIS, C ;
GHATAGE, P .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1990, 33 (01) :60-64
[5]   The Spectral Density of Hankel Operators with Piecewise Continuous Symbols [J].
Fedele, Emilio .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2020, 92 (01)
[6]   ON THE SPECTRUM OF THE BERGMAN-HILBERT MATRIX [J].
GHATAGE, PG .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 97 :57-63
[7]  
Grenander U., 1958, Toeplitz forms and their applications
[8]  
Hardy G., 1959, Inequalities
[9]   A Hilbert space of Dirichlet series and systems of dilated functions in L(2)(0,1) [J].
Hedenmalm, H ;
Lindqvist, P ;
Seip, K .
DUKE MATHEMATICAL JOURNAL, 1997, 86 (01) :1-37
[10]  
Ismagilov R S., 1963, SOV MATH DOKL, V4, P462