A Hierarchical Deep Learning-Based Intrusion Detection Architecture for Clustered Internet of Things

被引:19
|
作者
Elsayed, Rania [1 ]
Hamada, Reem [1 ]
Hammoudeh, Mohammad [2 ]
Abdalla, Mahmoud [1 ]
Elsaid, Shaimaa Ahmed [1 ]
机构
[1] Zagazig Univ, Elect & Commun Engn, Zagazig 44519, Egypt
[2] King Fahd Univ Petr & Minerals, Informat & Comp Sci, Dhahran 31261, Saudi Arabia
关键词
intrusion detection system (IDS); internet of things (IoT); deep learning (DL); long short-term memory (LSTM); energy harvesting real-time routing protocol (EHRT); low-energy adaptive clustering hierarchy (LEACH); artificial fish swarm algorithm (AFSA); ToN-IoT dataset; InSDN dataset; ATTACK DETECTION; FRAMEWORK;
D O I
10.3390/jsan12010003
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Internet of Things (IoT) system's ever-expanding attack surface calls for a new intrusion detection system (IDS). These systems may include thousands of wireless devices that need to be protected from cyberattacks. Recent research efforts used machine learning to analyze and identify various attacks and abnormal behavior on IoT systems. Most of these techniques are characterized by low accuracy and they do not scale to today's IoT-enabled smart cities applications. This article proposes a secure automatic two-levels intrusion detection system (SATIDS) which utilizes the minimum redundancy maximum relevance (MRMR) feature selection technique and an enhanced version of long short-term memory (LSTM) based on an artificial recurrent neural network (RNN) to enhance the IDS performance. SATIDS aims at detecting traffic anomalies with greater accuracy while also reducing the time it takes to perform this task. The proposed algorithm was trained and evaluated using two of the most recent datasets based on realistic data: ToN-IoT and InSDN datasets. The performance analysis of the proposed system proves that it can differentiate between attacks and normal traffic, identify the attack category, and finally define the type of sub-attack with high accuracy. Comparing the performance of the proposed system with the existing IDSs reveals that it outperforms its best rivals from the literature in detecting many types of attacks. It improves accuracy, detection rates, F1-score, and precision. Using 500 hidden and two LSTM layers achieves accuracy of 97.5%, precision of 98.4%, detection rate of 97.9%, and F1-score of 98.05% on ToN-IoT dataset, and precision of 99%, detection rate of 99.6%, and F1-score of 99.3% on InSDN dataset. Finally, SATIDS was applied to an IoT network which utilizes the energy harvesting real-time routing protocol (EHRT). EHRT optimizes the low-energy adaptive clustering hierarchy (LEACH) routing technique using a modified artificial fish swarm algorithm. The integration between the optimized LEACH and the proposed IDS enhances the network lifetime, energy consumption, and security.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Deep Learning-Based Network Intrusion Detection System for Internet of Medical Things
    Ravi V.
    Pham T.D.
    Alazab M.
    IEEE Internet of Things Magazine, 2023, 6 (02): : 50 - 54
  • [2] Deep learning-based intrusion detection approach for securing industrial Internet of Things
    Soliman, Sahar
    Oudah, Wed
    Aljuhani, Ahamed
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 81 : 371 - 383
  • [3] The robust deep learning-based schemes for intrusion detection in Internet of Things environments
    Fu, Xingbing
    Zhou, Nan
    Jiao, Libin
    Li, Haifeng
    Zhang, Jianwu
    ANNALS OF TELECOMMUNICATIONS, 2021, 76 (5-6) : 273 - 285
  • [4] A comprehensive survey on deep learning-based intrusion detection systems in Internet of Things (IoT)
    Al-Haija, Qasem Abu
    Droos, Ayat
    EXPERT SYSTEMS, 2025, 42 (02)
  • [5] Explainable Deep Learning-Based Feature Selection and Intrusion Detection Method on the Internet of Things
    Chen, Xuejiao
    Liu, Minyao
    Wang, Zixuan
    Wang, Yun
    SENSORS, 2024, 24 (16)
  • [6] Federated learning-based intrusion detection system for Internet of Things
    Najet Hamdi
    International Journal of Information Security, 2023, 22 : 1937 - 1948
  • [7] Federated learning-based intrusion detection system for Internet of Things
    Hamdi, Najet
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1937 - 1948
  • [8] Intrusion detection for Industrial Internet of Things based on deep learning
    Lu, Yaoyao
    Chai, Senchun
    Suo, Yuhan
    Yao, Fenxi
    Zhang, Chen
    NEUROCOMPUTING, 2024, 564
  • [9] Intrusion Detection Model of Internet of Things Based on Deep Learning
    Wang, Yan
    Han, Dezhi
    Cui, Mingming
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2023, 20 (04) : 1519 - 1540
  • [10] Internet of Things: A survey on machine learning-based intrusion detection approaches
    da Costa, Kelton A. P.
    Papa, Joao P.
    Lisboa, Celso O.
    Munoz, Roberto
    de Albuquerque, Victor Hugo C.
    COMPUTER NETWORKS, 2019, 151 : 147 - 157