High-Voltage Layered NaNi0.5Co0.,Ti0.3Sb0.,O2 Cathode for Sodium-Ion Batteries

被引:10
作者
Gogula, Sudheer Kumar [1 ,2 ]
Gangadharappa, Vasantha A. [1 ,2 ]
Jayaraman, Vinoth Kumar [1 ]
Prakash, Annigere S. [1 ,2 ]
机构
[1] Council Sci & Ind Res CSIR, Cent Electrochem Res Inst, Chennai Unit, Chennai 600113, Tamil Nadu, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, Uttar Pradesh, India
关键词
PERFORMANCE; MG; NI;
D O I
10.1021/acs.energyfuels.2c04096
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Developing a high-voltage cathode material for sodium-ion batteries is a great challenge. Herein, we report an O3 type layered NaNi0.5Co0.1Ti0.3Sb0.1O2 cathode composition, which can operate at a high voltage (4.35 V). Inclusion of different valence state transition metals, like Ni, Co, and Ti, and a metalloid Sb in the sodium metal oxide composition leads to the formation of a cationic disordered structure, which enhances redox, electronic conductivity, cycling stability, and working voltage. The structural characterizations reveal that the composition is free from superstructure reflections, and electrochemical studies show that the composition suppresses multiphase transitions. As a result, NaNi0.5Co0.1Ti0.3Sb0.1O2, exhibits initial charge and discharge capacities as 129 and 112 mAh/g, respectively, at the current rate of 9.1 mA/g for 2.0-4.35 V. Thus, the high voltage, improved capacity, and retention characteristics of NaNi0.5Co0.1Ti0.3Sb0.1O2 would open up the way for bulk production of Na-ion batteries.
引用
收藏
页码:4143 / 4149
页数:7
相关论文
共 36 条
[1]   Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries [J].
Ahmed, Shabbir ;
Nelson, Paul A. ;
Gallagher, Kevin G. ;
Susarla, Naresh ;
Dees, Dennis W. .
JOURNAL OF POWER SOURCES, 2017, 342 :733-740
[2]   Honeycomb-layer structured Na3Ni2BiO6 as a high voltage and long life cathode material for sodiumion batteries [J].
Bhange, Deu S. ;
Ali, Ghulam ;
Kim, Dong-Hyun ;
Anang, Daniel A. ;
Shin, Tae Joo ;
Kim, Min-Gyu ;
Kang, Yong-Mook ;
Chung, Kyung Yoon ;
Nam, Kyung-Wan .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (03) :1300-1310
[3]   High-voltage honeycomb layered oxide positive electrodes for rechargeable sodium batteries [J].
Chen, Chih-Yao ;
Rizell, Josef ;
Kanyolo, Godwill Mbiti ;
Masese, Titus ;
Sassa, Yasmine ;
Mansson, Martin ;
Kubota, Keigo ;
Matsumoto, Kazuhiko ;
Hagiwara, Rika ;
Xu, Qiang .
CHEMICAL COMMUNICATIONS, 2020, 56 (65) :9272-9275
[4]   STRUCTURAL CLASSIFICATION AND PROPERTIES OF THE LAYERED OXIDES [J].
DELMAS, C ;
FOUASSIER, C ;
HAGENMULLER, P .
PHYSICA B & C, 1980, 99 (1-4) :81-85
[5]   Na2Ni2TeO6: Evaluation as a cathode for sodium battery [J].
Gupta, Asha ;
Mullins, C. Buddie ;
Goodenough, John B. .
JOURNAL OF POWER SOURCES, 2013, 243 :817-821
[6]   Evaluation of O3-type Na0.8Ni0.6Sb0.4O2 as cathode materials for sodium-ion batteries [J].
Han, Jin ;
Niu, Yubin ;
Zhang, Yan ;
Jiang, Jian ;
Bao, Shu-juan ;
Xu, Maowen .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (08) :2331-2335
[7]   Advanced layered oxide cathodes for sodium/potassium-ion batteries: Development, challenges and prospects [J].
Huang, Zhi-Xiong ;
Gu, Zhen-Yi ;
Heng, Yong-Li ;
Ang, Edison Huixiang ;
Geng, Hong-Bo ;
Wu, Xing-Long .
CHEMICAL ENGINEERING JOURNAL, 2023, 452
[8]   Hollow Na0.62K0.05Mn0.7Ni0.2Co0.1O2 polyhedra with exposed stable {001} facets and K riveting for sodium-ion batteries [J].
Huang, Zhi-Xiong ;
Zhang, Xue-Li ;
Zhao, Xin-Xin ;
Heng, Yong-Li ;
Wang, Ting ;
Geng, Hongbo ;
Wu, Xing-Long .
SCIENCE CHINA-MATERIALS, 2023, 66 (01) :79-87
[9]   Novel Cathode Materials for Na-Ion Batteries Composed of Spoke-Like Nanorods of Na[Ni0.61Co0.12Mn0.27]O2 Assembled in Spherical Secondary Particles [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Yoon, Chong Seung ;
Kim, Sung-Soo ;
Aurbach, Doron ;
Sun, Yang-Kook .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (44) :8083-8093
[10]   Synthesis Control of Layered Oxide Cathodes for Sodium-Ion Batteries: A Necessary Step Toward Practicality [J].
Lamb, Julia ;
Manthiram, Arumugam .
CHEMISTRY OF MATERIALS, 2020, 32 (19) :8431-8441