Large Interferometer For Exoplanets (LIFE). XII. The Detectability of Capstone Biosignatures in the Mid-infrared-Sniffing Exoplanetary Laughing Gas and Methylated Halogens

被引:13
作者
Angerhausen, Daniel [1 ,2 ]
Pidhorodetska, Daria [3 ]
Leung, Michaela [3 ]
Hansen, Janina [1 ,2 ]
Alei, Eleonora [1 ,2 ,4 ]
Dannert, Felix [1 ,2 ]
Kammerer, Jens [5 ,6 ]
Quanz, Sascha P. [1 ,2 ,7 ]
Schwieterman, Edward W. [3 ,8 ]
机构
[1] Swiss Fed Inst Technol, Inst Particle Phys & Astrophys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[2] Natl Ctr Competence Res PlanetS, Gesellschaftsstr 6, CH-3012 Bern, Switzerland
[3] Univ Calif Riverside, Dept Earth & Planetary Sci, Riverside, CA USA
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] European Southern Observ, Karl Schwarzschild Str 2, D-85748 Garching, Germany
[6] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
[7] Swiss Fed Inst Technol, Dept Earth Sci, Sonneggstr 5, CH-8092 Zurich, Switzerland
[8] Blue Marble Space Inst Sci, Seattle, WA 98154 USA
基金
瑞士国家科学基金会;
关键词
MIDINFRARED SPACE-INTERFEROMETER; HABITABLE ZONES; HOSTS SURVEY; X-RAY; LIFE; ATMOSPHERES; EARTH; I; PLANETS; IMPACT;
D O I
10.3847/1538-3881/ad1f4b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This study aims to identify exemplary science cases for observing N2O, CH3Cl, and CH3Br in exoplanet atmospheres at abundances consistent with biogenic production using a space-based mid-infrared nulling interferometric observatory, such as the Large Interferometer For Exoplanets (LIFE) mission concept. We use a set of scenarios derived from chemical kinetics models that simulate the atmospheric response of varied levels of biogenic production of N2O, CH3Cl, and CH3Br in O2-rich terrestrial planet atmospheres to produce forward models for our LIFEsim observation simulator software. In addition, we demonstrate the connection to retrievals for selected cases. We use the results to derive observation times needed for the detection of these scenarios and apply them to define science requirements for the mission. Our analysis shows that in order to detect relevant abundances with a mission like LIFE in its current baseline setup, we require: (i) only a few days of observation time for certain very nearby "golden target" scenarios, which also motivate future studies of "spectral-temporal" observations (ii) similar to 10 days in certain standard scenarios such as temperate, terrestrial planets around M star hosts at 5 pc, (iii) similar to 50-100 days in the most challenging but still feasible cases, such as an Earth twin at 5 pc. A few cases with very low fluxes around specific host stars are not detectable. In summary, the abundances of these capstone biosignatures are detectable at plausible biological production fluxes for most cases examined and for a significant number of potential targets.
引用
收藏
页数:25
相关论文
共 82 条
[21]   THE MUSCLES TREASURY SURVEY. I. MOTIVATION AND OVERVIEW [J].
France, Kevin ;
Loyd, R. O. Parke ;
Youngblood, Allison ;
Brown, Alexander ;
Schneider, P. Christian ;
Hawley, Suzanne L. ;
Froning, Cynthia S. ;
Linsky, Jeffrey L. ;
Roberge, Aki ;
Buccino, Andrea P. ;
Davenport, James R. A. ;
Fontenla, Juan M. ;
Kaltenegger, Lisa ;
Kowalski, Adam F. ;
Mauas, Pablo J. D. ;
Miguel, Yamila ;
Redfield, Seth ;
Rugheimer, Sarah ;
Tian, Feng ;
Vieytes, Mariela C. ;
Walkowicz, Lucianne M. ;
Weisenburger, Kolby L. .
ASTROPHYSICAL JOURNAL, 2016, 820 (02)
[23]   Exoplanet Biosignatures: Observational Prospects [J].
Fujii, Yuka ;
Angerhausen, Daniel ;
Deitrick, Russell ;
Domagal-Goldman, Shawn ;
Grenfell, John Lee ;
Hori, Yasunori ;
Kane, Stephen R. ;
Palle, Enric ;
Rauer, Heike ;
Siegler, Nicholas ;
Stapelfeldt, Karl ;
Stevenson, Kevin B. .
ASTROBIOLOGY, 2018, 18 (06) :739-778
[24]   The HITRAN2020 molecular spectroscopic database [J].
Gordon, I. E. ;
Rothman, L. S. ;
Hargreaves, R. J. ;
Hashemi, R. ;
Karlovets, E., V ;
Skinner, F. M. ;
Conway, E. K. ;
Hill, C. ;
Kochanov, R., V ;
Tan, Y. ;
Wcislo, P. ;
Finenko, A. A. ;
Nelson, K. ;
Bernath, P. F. ;
Birk, M. ;
Boudon, V ;
Campargue, A. ;
Chance, K., V ;
Coustenis, A. ;
Drouin, B. J. ;
Flaud, J-M ;
Gamache, R. R. ;
Hodges, J. T. ;
Jacquemart, D. ;
Mlawer, E. J. ;
Nikitin, A., V ;
Perevalov, V., I ;
Rotger, M. ;
Tennyson, J. ;
Toon, G. C. ;
Tran, H. ;
Tyuterev, V. G. ;
Adkins, E. M. ;
Baker, A. ;
Barbe, A. ;
Cane, E. ;
Csaszar, A. G. ;
Dudaryonok, A. ;
Egorov, O. ;
Fleisher, A. J. ;
Fleurbaey, H. ;
Foltynowicz, A. ;
Furtenbacher, T. ;
Harrison, J. J. ;
Hartmann, J-M ;
Horneman, V-M ;
Huang, X. ;
Karman, T. ;
Karns, J. ;
Kassi, S. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 277
[25]   CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST [J].
Greene, Thomas P. ;
Line, Michael R. ;
Montero, Cezar ;
Fortney, Jonathan J. ;
Lustig-Yaeger, Jacob ;
Luther, Kyle .
ASTROPHYSICAL JOURNAL, 2016, 817 (01)
[26]   Large Interferometer For Exoplanets (LIFE) IV. Ideal kernel-nulling array architectures for a space-based mid-infrared nulling interferometer [J].
Hansen, Jonah T. ;
Ireland, Michael J. .
ASTRONOMY & ASTROPHYSICS, 2022, 664
[27]   Large Interferometer For Exoplanets (LIFE) VII. Practical implementation of a five-telescope kernel-nulling beam combiner with a discussion on instrumental uncertainties and redundancy benefits [J].
Hansen, JonahT T. ;
Ireland, Michael J. J. ;
Laugier, Romain ;
LIFE Collabrat .
ASTRONOMY & ASTROPHYSICS, 2023, 670
[28]   Imaging of exocomets with infrared interferometry [J].
Janson, Markus ;
Patel, Jayshil ;
Ringqvist, Simon C. ;
Lu, Cicero ;
Rebollido, Isabel ;
Lichtenberg, Tim ;
Brandeker, Alexis ;
Angerhausen, Daniel ;
Noack, Lena .
ASTRONOMY & ASTROPHYSICS, 2023, 671
[29]   Reversible RNA adenosine methylation in biological regulation [J].
Jia, Guifang ;
Fu, Ye ;
He, Chuan .
TRENDS IN GENETICS, 2013, 29 (02) :108-115
[30]   Large Interferometer For Exoplanets (LIFE): VI. Detecting rocky exoplanets in the habitable zones of Sun-like stars [J].
Kammerer, Jens ;
Quanz, Sascha P. ;
Dannert, Felix .
ASTRONOMY & ASTROPHYSICS, 2022, 668