FAST KRASNOSEL'SKI\u I--MANN ALGORITHM WITH A CONVERGENCE RATE OF THE FIXED POINT ITERATION OF o(1/k)

被引:3
作者
Bot, Radu Ioan [1 ]
Nguyen, Dang-Khoa [1 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
nonexpansive operator; averaged operator; Krasnosel'ski\u {\i}--Mann iteration; Nesterov's momentum; Lyapunov analysis; convergence rates; convergence of iterates; SPLITTING ALGORITHMS; WEAK-CONVERGENCE; OPTIMIZATION; SEQUENCE;
D O I
10.1137/22M1504305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Krasnosel'skiu --Mann (KM) algorithm is the most fundamental iterative scheme designed to find a fixed point of an averaged operator in the framework of a real Hilbert space, since it lies at the heart of various numerical algorithms for solving monotone inclusions and convex optimization problems. We enhance the Krasnosel'skiu --Mann algorithm with Nesterov's momentum updates and show that the resulting numerical method exhibits a convergence rate for the fixed point residual of o(1/k) while preserving the weak convergence of the iterates to a fixed point of the operator. Numerical experiments illustrate the superiority of the resulting so-called Fast KM algorithm over various fixed point iterative schemes, and also its oscillatory behavior, which is a specific of Nesterov's momentum optimization algorithms.
引用
收藏
页码:2813 / 2843
页数:31
相关论文
共 44 条
  • [1] Fast convex optimization via inertial dynamics with Hessian driven damping
    Attouch, Hedy
    Peypouquet, Juan
    Redont, Patrick
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (10) : 5734 - 5783
  • [2] Baillon J., 1996, Lecture Notes in Pure and Applied Mathematics, P51
  • [3] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [4] KRASNOSELSKI-MANN ITERATIONS IN NORMED SPACES
    BORWEIN, J
    REICH, S
    SHAFRIR, I
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (01): : 21 - 28
  • [5] Bot R.I., 2022, arXiv
  • [6] A strongly convergent Krasnosel' skil-Mann-type algorithm for finding a common fixed point of a countably infinite family of nonexpansive operators in Hilbert spaces
    Bot, Radu Ioan
    Meier, Dennis
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 395
  • [7] Inducing strong convergence into the asymptotic behaviour of proximal splitting algorithms in Hilbert spaces
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    Meier, Dennis
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2019, 34 (03) : 489 - 514
  • [8] A Dynamical System Associated with the Fixed Points Set of a Nonexpansive Operator
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2017, 29 (01) : 155 - 168
  • [9] Sharp convergence rates for averaged nonexpansive maps
    Bravo, Mario
    Cominetti, Roberto
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2018, 227 (01) : 163 - 188
  • [10] Shanks Sequence Transformations and Anderson Acceleration
    Brezinski, Claude
    Redivo-Zaglia, Michela
    Saad, Yousef
    [J]. SIAM REVIEW, 2018, 60 (03) : 646 - 669