Enhancing SPARQL Query Generation for Knowledge Base Question Answering Systems by Learning to Correct Triplets

被引:0
|
作者
Qi, Jiexing [1 ]
Su, Chang [1 ]
Guo, Zhixin [1 ]
Wu, Lyuwen [1 ]
Shen, Zanwei [1 ]
Fu, Luoyi [1 ]
Wang, Xinbing [1 ]
Zhou, Chenghu [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 04期
关键词
Knowledge Base Question Answering; Text-to-SPARQL; semantic parsing; further pretraining; Triplet Structure;
D O I
10.3390/app14041521
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Generating SPARQL queries from natural language questions is challenging in Knowledge Base Question Answering (KBQA) systems. The current state-of-the-art models heavily rely on fine-tuning pretrained models such as T5. However, these methods still encounter critical issues such as triple-flip errors (e.g., (subject, relation, object) is predicted as (object, relation, subject)). To address this limitation, we introduce TSET (Triplet Structure Enhanced T5), a model with a novel pretraining stage positioned between the initial T5 pretraining and the fine-tuning for the Text-to-SPARQL task. In this intermediary stage, we introduce a new objective called Triplet Structure Correction (TSC) to train the model on a SPARQL corpus derived from Wikidata. This objective aims to deepen the model's understanding of the order of triplets. After this specialized pretraining, the model undergoes fine-tuning for SPARQL query generation, augmenting its query-generation capabilities. We also propose a method named "semantic transformation" to fortify the model's grasp of SPARQL syntax and semantics without compromising the pre-trained weights of T5. Experimental results demonstrate that our proposed TSET outperforms existing methods on three well-established KBQA datasets: LC-QuAD 2.0, QALD-9 plus, and QALD-10, establishing a new state-of-the-art performance (95.0% F1 and 93.1% QM on LC-QuAD 2.0, 75.85% F1 and 61.76% QM on QALD-9 plus, 51.37% F1 and 40.05% QM on QALD-10).
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Knowledge Base Question Answering via Structured Query Generation using Question domain
    Li, Jiecheng
    Peng, Zizhen
    Zhu, Xiaoying
    Lu, Keda
    2022 IEEE 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS, IUCC/CIT/DSCI/SMARTCNS, 2022, : 394 - 400
  • [2] Staged query graph generation based on answer type for question answering over knowledge base
    Chen, Haoyuan
    Ye, Fei
    Fan, Yuankai
    He, Zhenying
    Jing, Yinan
    Zhang, Kai
    Wang, X. Sean
    KNOWLEDGE-BASED SYSTEMS, 2022, 253
  • [3] Two-Stage Query Graph Selection for Knowledge Base Question Answering
    Jia, Yonghui
    Tan, Chuanyuan
    Chen, Yuehe
    Zhu, Muhua
    Chao, Pingfu
    Chen, Wenliang
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT II, 2022, 13552 : 16 - 28
  • [4] Hierarchical Query Graph Generation for Complex Question Answering over Knowledge Graph
    Qiu, Yunqi
    Zhang, Kun
    Wang, Yuanzhuo
    Jin, Xiaolong
    Bai, Long
    Guan, Saiping
    Cheng, Xueqi
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1285 - 1294
  • [5] Knowledge-Enhanced Iterative Instruction Generation and Reasoning for Knowledge Base Question Answering
    Du, Haowei
    Huang, Quzhe
    Zhang, Chen
    Zhao, Dongyan
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I, 2022, 13551 : 431 - 444
  • [6] Complex Knowledge Base Question Answering: A Survey
    Lan, Yunshi
    He, Gaole
    Jiang, Jinhao
    Jiang, Jing
    Zhao, Wayne Xin
    Wen, Ji-Rong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11196 - 11215
  • [7] Intent Identification for Knowledge Base Question Answering
    Dai, Feifei
    Feng, Chong
    Wang, Zhiqiang
    Pei, Yuxia
    Huang, Heyan
    2017 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2017, : 96 - 99
  • [8] A Survey of Question Answering over Knowledge Base
    Wu, Peiyun
    Zhang, Xiaowang
    Feng, Zhiyong
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE COMPUTING AND LANGUAGE UNDERSTANDING, 2019, 1134 : 86 - 97
  • [9] Research on the method of knowledge base question answering
    Jin, Tao
    Wang, Hai-Jun
    2021 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING, BIG DATA AND BUSINESS INTELLIGENCE (MLBDBI 2021), 2021, : 527 - 530
  • [10] Knowledge Base Question Answering With Attentive Pooling for Question Representation
    Wang, Run-Ze
    Ling, Zhen-Hua
    Hu, Yu
    IEEE ACCESS, 2019, 7 : 46773 - 46784