A real-world clinicopathological model for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer

被引:6
作者
Fang, Shan [1 ]
Xia, Wenjie [2 ]
Zhang, Haibo [3 ]
Ni, Chao [4 ]
Wu, Jun [2 ]
Mo, Qiuping [2 ]
Jiang, Mengjie [5 ]
Guan, Dandan [2 ]
Yuan, Hongjun [2 ]
Chen, Wuzhen [6 ]
机构
[1] Hangzhou Med Coll, Zhejiang Prov Peoples Hosp, Rehabil & Sports Med Res Inst Zhejiang Prov, Ctr Rehabil Med,Dept Rehabil Med,Affiliated People, Hangzhou, Zhejiang, Peoples R China
[2] Hangzhou Med Coll, Zhejiang Prov Peoples Hosp, Affiliated Peoples Hosp, Gen Surg,Canc Ctr,Dept Breast Surg, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Prov Peoples Hosp, Hangzhou Med Coll, Affiliated Peoples Hosp, Dept Radiat Oncol,Canc Ctr, Hangzhou, Zhejiang, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 2, Dept Breast Surg Surg Oncol, Sch Med, Hangzhou, Peoples R China
[5] Zhejiang Chinese Med Univ, Zhejiang Prov Hosp Chinese Med, Dept Radiotherapy, Affiliated Hosp 1, Hangzhou, Peoples R China
[6] Lanxi Peoples Hosp, Dept Oncol, Jinhua, Peoples R China
关键词
breast cancer; predictive model; neoadjuvant chemotherapy; pathological complete response; prognosis; TUMOR-INFILTRATING LYMPHOCYTES; CELLS; SURVIVAL; THERAPY;
D O I
10.3389/fonc.2024.1323226
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: This study aimed to develop and validate a clinicopathological model to predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients and identify key prognostic factors. Methods: This retrospective study analyzed data from 279 breast cancer patients who received NAC at Zhejiang Provincial People's Hospital from 2011 to 2021. Additionally, an external validation dataset, comprising 50 patients from Lanxi People's Hospital and Second Affiliated Hospital, Zhejiang University School of Medicine from 2022 to 2023 was utilized for model verification. A multivariate logistic regression model was established incorporating clinical, ultrasound features, circulating tumor cells (CTCs), and pathology variables at baseline and post-NAC. Model performance for predicting pCR was evaluated. Prognostic factors were identified using survival analysis. Results: In the 279 patients enrolled, a pathologic complete response (pCR) rate of 27.96% (78 out of 279) was achieved. The predictive model incorporated independent predictors such as stromal tumor-infiltrating lymphocyte (sTIL) levels, Ki-67 expression, molecular subtype, and ultrasound echo features. The model demonstrated strong predictive accuracy for pCR (C-statistics/AUC 0.874), especially in human epidermal growth factor receptor 2 (HER2)-enriched (C-statistics/AUC 0.878) and triple-negative (C-statistics/AUC 0.870) subtypes, and the model performed well in external validation data set (C-statistics/AUC 0.836). Incorporating circulating tumor cell (CTC) changes post-NAC and tumor size changes further improved predictive performance (C-statistics/AUC 0.945) in the CTC detection subgroup. Key prognostic factors included tumor size >5cm, lymph node metastasis, sTIL levels, estrogen receptor (ER) status and pCR. Despite varied pCR rates, overall prognosis after standard systemic therapy was consistent across molecular subtypes. Conclusion: The developed predictive model showcases robust performance in forecasting pCR in NAC-treated breast cancer patients, marking a step toward more personalized therapeutic strategies in breast cancer.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Circulating tumor cells in breast cancer [J].
Bidard, Francois-Clement ;
Proudhon, Charlotte ;
Pierga, Jean-Yves .
MOLECULAR ONCOLOGY, 2016, 10 (03) :418-430
[2]   Tumor-infiltrating lymphocytes in Breast Cancer and implications for clinical practice [J].
de Melo Gagliato, Debora ;
Cortes, Javier ;
Curigliano, Giuseppe ;
Loi, Sherene ;
Denkert, Carsten ;
Perez-Garcia, Jose ;
Holgado, Esther .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2017, 1868 (02) :527-537
[3]   Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy [J].
Denkert, Carsten ;
von Minckwitz, Gunter ;
Darb-Esfahani, Silvia ;
Lederer, Bianca ;
Heppner, Barbara I. ;
Weber, Karsten E. ;
Budczies, Jan ;
Huober, Jens ;
Klauschen, Frederick ;
Furlanetto, Jenny ;
Schmitt, Wolfgang D. ;
Blohmer, Jens-Uwe ;
Karn, Thomas ;
Pfitzner, Berit M. ;
Kuemmel, Sherko ;
Engels, Knut ;
Schneeweiss, Andreas ;
Hartmann, Arndt ;
Noske, Aurelia ;
Fasching, Peter A. ;
Jackisch, Christian ;
van Mackelenbergh, Marion ;
Sinn, Peter ;
Schem, Christian ;
Hanusch, Claus ;
Untch, Michael ;
Loibl, Sibylle .
LANCET ONCOLOGY, 2018, 19 (01) :40-50
[4]   Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: A report of the International Immuno-Oncology Biomarker Working Group on Breast Cancer [J].
Dieci, Maria Vittoria ;
Radosevic-Robin, Nina ;
Fineberg, Susan ;
van den Eynden, Gert ;
Ternes, Nils ;
Penault-Llorca, Frederique ;
Pruneri, Giancarlo ;
D'Alfonso, Timothy M. ;
Demaria, Sandra ;
Castaneda, Carlos ;
Sanchez, Joselyn ;
Badve, Sunil ;
Michiels, Stefan ;
Bossuyt, Veerle ;
Rojo, Federico ;
Singh, Baljit ;
Nielsen, Torsten ;
Viale, Giuseppe ;
Kim, Seong-Rim ;
Hewitt, Stephen ;
Wienert, Stephan ;
Loibl, Sybille ;
Rimm, David ;
Symmans, Fraser ;
Denkert, Carsten ;
Adams, Sylvia ;
Loi, Sherene ;
Salgado, Roberto .
SEMINARS IN CANCER BIOLOGY, 2018, 52 :16-25
[5]  
Hammond MEH, 2010, ARCH PATHOL LAB MED, V134, P907, DOI [10.1200/JOP.777003, 10.1043/1543-2165-134.7.e48, 10.5858/134.6.907, 10.1200/JCO.2009.25.6529]
[6]   Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer [J].
Huppert, Laura A. ;
Gumusay, Ozge ;
Idossa, Dame ;
Rugo, Hope S. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2023, 73 (05) :480-515
[7]   Body composition change during neoadjuvant chemotherapy for breast cancer [J].
Jang, Min Kyeong ;
Park, Seho ;
Park, Chang ;
Doorenbos, Ardith Z. ;
Go, Jieon ;
Kim, Sue .
FRONTIERS IN ONCOLOGY, 2022, 12
[8]   Pitfalls in assessing stromal tumor infiltrating lymphocytes (sTILs) in breast cancer [J].
Kos, Zuzana ;
Roblin, Elvire ;
Kim, Rim S. ;
Michiels, Stefan ;
Gallas, Brandon D. ;
Chen, Weijie ;
van de Vijver, Koen K. ;
Goel, Shom ;
Adams, Sylvia ;
Demaria, Sandra ;
Viale, Giuseppe ;
Nielsen, Torsten O. ;
Badve, Sunil S. ;
Symmans, W. Fraser ;
Sotiriou, Christos ;
Rimm, David L. ;
Hewitt, Stephen ;
Denkert, Carsten ;
Loibl, Sibylle ;
Luen, Stephen J. ;
Bartlett, John M. S. ;
Savas, Peter ;
Pruneri, Giancarlo ;
Dillon, Deborah A. ;
Cheang, Maggie Chon U. ;
Tutt, Andrew ;
Hall, Jacqueline A. ;
Kok, Marleen ;
Horlings, Hugo M. ;
Madabhushi, Anant ;
van der Laak, Jeroen ;
Ciompi, Francesco ;
Laenkholm, Anne-Vibeke ;
Bellolio, Enrique ;
Gruosso, Tina ;
Fox, Stephen B. ;
Araya, Juan Carlos ;
Floris, Giuseppe ;
Hudecek, Jan ;
Voorwerk, Leonie ;
Beck, Andrew H. ;
Kerner, Jen ;
Larsimont, Denis ;
Declercq, Sabine ;
Van den Eynden, Gert ;
Pusztai, Lajos ;
Ehinger, Anna ;
Yang, Wentao ;
AbdulJabbar, Khalid ;
Yuan, Yinyin .
NPJ BREAST CANCER, 2020, 6 (01)
[9]   Optimal treatment strategy for hormone receptor-positive human epidermal growth factor receptor 2-negative breast cancer patients with 1-2 suspicious axillary lymph node metastases on breast magnetic resonance imaging: upfront surgery vs. neoadjuvant chemotherapy [J].
Lee, Seung Eun ;
Ahn, Sung Gwe ;
Ji, Jung Hwan ;
Kook, Yoonwon ;
Jang, Ji Soo ;
Baek, Seung Ho ;
Jeong, Joon ;
Bae, Soong June .
FRONTIERS IN ONCOLOGY, 2023, 13
[10]   Machine learning predicts the prognosis of breast cancer patients with initial bone metastases [J].
Li, Chaofan ;
Liu, Mengjie ;
Li, Jia ;
Wang, Weiwei ;
Feng, Cong ;
Cai, Yifan ;
Wu, Fei ;
Zhao, Xixi ;
Du, Chong ;
Zhang, Yinbin ;
Wang, Yusheng ;
Zhang, Shuqun ;
Qu, Jingkun .
FRONTIERS IN PUBLIC HEALTH, 2022, 10