Modified Two-Parameter Liu Estimator for Addressing Multicollinearity in the Poisson Regression Model

被引:16
作者
Abdelwahab, Mahmoud M. [1 ,2 ]
Abonazel, Mohamed R. [3 ]
Hammad, Ali T. [4 ]
El-Masry, Amera M. [5 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh 90950, Saudi Arabia
[2] Higher Inst Adm Sci, Dept Basic Sci, Osim 12961, Cairo, Egypt
[3] Cairo Univ, Fac Grad Studies Stat Res, Dept Appl Stat & Econometr, Giza 12613, Egypt
[4] Tanta Univ, Fac Sci, Dept Math, Tanta 31527, Egypt
[5] Port Said Univ, Fac Management Technol & Informat Syst, Dept Math & Stat, Port Said 42521, Egypt
关键词
biased estimators; count regression; Poisson regression model; multicollinearity; RIDGE-REGRESSION; PARAMETERS; LOG;
D O I
10.3390/axioms13010046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study introduces a new two-parameter Liu estimator (PMTPLE) for addressing the multicollinearity problem in the Poisson regression model (PRM). The estimation of the PRM is traditionally accomplished through the Poisson maximum likelihood estimator (PMLE). However, when the explanatory variables are correlated, thus leading to multicollinearity, the variance or standard error of the PMLE is inflated. To address this issue, several alternative estimators have been introduced, including the Poisson ridge regression estimator (PRRE), Liu estimator (PLE), and adjusted Liu estimator (PALE), each of them relying on a single shrinkage parameter. The PMTPLE uses two shrinkage parameters, which enhances its adaptability and robustness in the presence of multicollinearity between explanatory variables. To assess the performance of the PMTPLE compared to the four existing estimators (the PMLE, PRRE, PLE, and PALE), a simulation study is conducted that encompasses various scenarios and two empirical applications. The evaluation of the performance is based on the mean square error (MSE) criterion. The theoretical comparison, simulation results, and findings of the two applications consistently demonstrate the superiority of the PMTPLE over the other estimators, establishing it as a robust solution for count data analysis under multicollinearity conditions.
引用
收藏
页数:22
相关论文
共 35 条
[1]   Developing a two-parameter Liu estimator for the COM-Poisson regression model: Application and simulation [J].
Abonazel, Mohamed R. ;
Awwad, Fuad A. ;
Eldin, Elsayed Tag ;
Kibria, B. M. Golam ;
Khattab, Ibrahim G. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
[2]   New modified two-parameter Liu estimator for the Conway-Maxwell Poisson regression model [J].
Abonazel, Mohamed R. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (12) :1976-1996
[3]   A New Two-Parameter Estimator for Beta Regression Model: Method, Simulation, and Application [J].
Abonazel, Mohamed R. ;
Algamal, Zakariya Yahya ;
Awwad, Fuad A. ;
Taha, Ibrahim M. .
FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 7
[4]   Beta ridge regression estimators: simulation and application [J].
Abonazel, Mohamed R. ;
Taha, Ibrahim M. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (09) :4280-4292
[5]   A new improved Liu-type estimator for Poisson regression models [J].
Akay, Kadri Ulas ;
Ertan, Esra .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (05) :1484-1503
[6]  
Aladeitan Benedicta B, 2021, F1000Res, V10, P548, DOI 10.12688/f1000research.53987.1
[7]   Developing a Liu-type estimator in beta regression model [J].
Algamal, Zakariya Yahya ;
Abonazel, Mohamed R. .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (05)
[8]   Developing ridge parameters for SUR model [J].
Alkhamisi, M. A. ;
Shukur, G. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (04) :544-564
[9]   Some modifications for choosing ridge parameters [J].
Alkhamisi, Mahdi ;
Khalaf, Ghadban ;
Shukur, Ghazi .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (11) :2005-2020
[10]   A new adjusted Liu estimator for the Poisson regression model [J].
Amin, Muhammad ;
Akram, Muhammad Nauman ;
Kibria, B. M. Golam .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (20)