Note on fractal interpolation function with variable parameters

被引:2
作者
Attia, Najmeddine [1 ]
Moulahi, Taoufik [2 ]
Amami, Rim [3 ]
Saidi, Neji [1 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Hasa 31982, Saudi Arabia
[2] Prince Sattam Bin Abdulaziz Univ, Coll Sci & Humanities Al kharj, Dept Math, Box 173, Al Kharj 11942, Saudi Arabia
[3] Imam Abdulrahman Bin Faisal Univ, Dept Basic Sci, Deanship Preparatory Year & Supporting Studies, POB 1982, Dammam 34212, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
关键词
iterated function system; generalized affine fractal interpolation function; ho center dot lder and Lipschitz functions;
D O I
10.3934/math.2024127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fractal interpolation function (FIF) is a new method of constructing new data points within the range of a discrete set of known data points. Consider the iterated functional system defined through the functions W-n(x, y) = (a(n)x + e(n), alpha(n)(x)y + psi(n)(x)), n = 1, ... , N. Then, we may define the generalized affine FIF f interpolating a given data set {(x(n), y(n)) is an element of I x R, n = 0, 1, ... , N}, where I = [x(0), x(N)]. In this paper, we discuss the smoothness of the FIF f. We prove, in particular, that f is theta-holder function whenever psi(n) are. Furthermore, we give the appropriate upper bound of the maximum range of FIF in this case.
引用
收藏
页码:2584 / 2601
页数:18
相关论文
共 40 条
  • [1] Box dimension of α-fractal function with variable scaling factors in subintervals
    Akhtar, Md Nasim
    Prasad, M. Guru Prem
    Navascures, M. A.
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 103 : 440 - 449
  • [2] On the construction of recurrent fractal interpolation functions using Geraghty contractions
    Attia, Najmeddine
    Jebali, Hajer
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (11): : 6866 - 6880
  • [3] On the Fractal interpolation functions associated with Matkowski contractions
    Attia, Najmeddine
    Balegh, Mohamed
    Amami, Rim
    Amami, Rimah
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (08): : 4652 - 4668
  • [4] Barnsley M., 1988, Fractals everywhere
  • [5] FRACTAL FUNCTIONS AND INTERPOLATION
    BARNSLEY, MF
    [J]. CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) : 303 - 329
  • [6] Stability of affine coalescence hidden variable fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (12) : 3757 - 3770
  • [7] Generalized cubic spline fractal interpolation functions
    Chand, A. K. B.
    Kapoor, G. P.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) : 655 - 676
  • [8] Chand A.K.B., 2007, Int. J. Non-Linear Sci., V3, P15
  • [9] Gang C., 1996, Appl.-Math. J. Chin. Univ. Ser. B, V11, P409
  • [10] CHARACTERIZATION OF APPROXIMATELY MONOTONE AND APPROXIMATELY HOLDER FUNCTIONS
    Goswami, Angshuman R.
    Pales, Zsolt
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (01): : 247 - 264