Isotriviality, integral points, and primitive primes in orbits in characteristic p

被引:2
作者
Carney, Alexander [1 ]
Hindes, Wade [2 ]
Tucker, Thomas J. [1 ]
机构
[1] Univ Rochester, Dept Math, Rochester, NY 14627 USA
[2] Texas State Univ, Dept Math, San Marcos, TX USA
关键词
arithmetic dynamics; integral points; arboreal representations; Zsigmondy sets; DIOPHANTINE APPROXIMATION; CANONICAL HEIGHTS; RATIONAL MAPS; ABC IMPLIES; DIVISORS; THEOREM; FIELDS;
D O I
10.2140/ant.2023.17.1573
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a characteristic p version of a theorem of Silverman on integral points in orbits over number fields and establish a primitive prime divisor theorem for polynomials in this setting. In characteristic p, the Thue-Siegel-Dyson-Roth theorem is false, so the proof requires new techniques from those used by Silverman. The problem is largely that isotriviality can arise in subtle ways, and we define and compare three different definitions of isotriviality for maps, sets, and curves. Using results of Favre and Rivera-Letelier on the structure of Julia sets, we prove that if phi is a nonisotrivial rational function and beta is not exceptional for phi, then phi(-n)(beta) is a nonisotrivial set for all sufficiently large n; we then apply diophantine results of Voloch and Wang that apply for all nonisotrivial sets. When phi is a polynomial, we use the nonisotriviality of phi(-n)(beta) for large n along with a partial converse to a result of Grothendieck in descent theory to deduce the nonisotriviality of the curve y(l) = phi(n)(x)- beta for large n and small primes l not equal p whenever beta is not postcritical; this enables us to prove stronger results on Zsigmondy sets. We provide some applications of these results, including a finite index theorem for arboreal representations coming from quadratic polynomials over function fields of odd characteristic.
引用
收藏
页码:1573 / 1594
页数:23
相关论文
共 47 条
[1]  
[Anonymous], 1994, ADV TOPICS ARITHMETI
[2]  
Baker M., 2010, Math. Surv. Monogr., V159
[3]   A finiteness theorem for canonical heights attached to rational maps over function fields [J].
Baker, Matthew .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 626 :205-233
[4]  
Bang A. S., 1886, Tidsskrift Math., V4, P130
[5]  
Benedetto R.L., 2019, Dynamics in one non-archimedean variable, DOI DOI 10.1090/GSM/198
[6]   Periods of rational maps modulo primes [J].
Benedetto, Robert L. ;
Ghioca, Dragos ;
Hutz, Benjamin ;
Kurlberg, Par ;
Scanlon, Thomas ;
Tucker, Thomas J. .
MATHEMATISCHE ANNALEN, 2013, 355 (02) :637-660
[7]  
Bombieri E., 2006, New Mathematical Monographs
[8]   Arboreal Galois representations [J].
Boston, Nigel ;
Jones, Rafe .
GEOMETRIAE DEDICATA, 2007, 124 (01) :27-35
[9]   Rational values of transcendental functions and arithmetic dynamics [J].
Boxall, Gareth ;
Jones, Gareth ;
Schmidt, Harry .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (05) :1567-1592
[10]   FINITE INDEX THEOREMS FOR ITERATED GALOIS GROUPS OF UNICRITICAL POLYNOMIALS [J].
Bridy, Andrew ;
Doyle, John R. ;
Ghioca, Dragos ;
Hsia, Liang-Chung ;
Tucker, Thomas J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (01) :733-752