Breuil-Kisin modules and integral p-adic Hodge theory

被引:3
作者
Gao, Hui [1 ]
Liu, Tong [2 ]
Ozeki, Yoshiyasu [3 ]
机构
[1] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Kanagawa Univ, Fac Sci, Dept Math & Phys, 2946 Tsuchiya, Hiratsuka, Kanagawa 2591293, Japan
基金
中国国家自然科学基金;
关键词
Breuil-Kisin modules; integral p-adic Hodge theory; (q); v)-modules; SEMI-STABLE REPRESENTATIONS; GALOIS REPRESENTATIONS; CRYSTALLINE REPRESENTATIONS; LATTICES; (PHI; CONJECTURE; COHOMOLOGY; REDUCTION;
D O I
10.4171/JEMS/1278
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a category of Breuil-Kisin GK-modules to classify integral semi-stable Galois representations. Our theory uses Breuil-Kisin modules and Breuil-Kisin-Fargues modules with Galois actions, and can be regarded as the algebraic avatar of the integral p-adic cohomology theories of Bhatt-Morrow-Scholze and Bhatt-Scholze. As a key ingredient, we classify Galois representations that are of finite E(u)-height.
引用
收藏
页码:3979 / 4032
页数:54
相关论文
共 43 条
[11]  
Breuil C., 2002, ADV STUDIES PURE MAT, V36, P51
[12]   REPRESENTATIONS GALOISIENNES p-ADIQUES ET (φ, τ)-MODULES [J].
Caruso, Xavier .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (13) :2525-2607
[13]   The Ainf-cohomology in the semistable case [J].
Cesnavicius, Kestutis ;
Koshikawa, Teruhisa .
COMPOSITIO MATHEMATICA, 2019, 155 (11) :2039-2128
[14]  
Cherbonnier F, 1998, INVENT MATH, V133, P581, DOI 10.1007/s002220050255
[15]  
Cherbonnier F., 1996, These de
[16]   Construction of semi-stable p-adic representations [J].
Colmez, P ;
Fontaine, JM .
INVENTIONES MATHEMATICAE, 2000, 140 (01) :1-43
[17]  
Colmez P, 1999, J REINE ANGEW MATH, V514, P119
[18]   Syntomic complexes and p-adic nearby cycles [J].
Colmez, Pierre ;
Niziol, Wieslawa .
INVENTIONES MATHEMATICAE, 2017, 208 (01) :1-108
[19]  
Colmez P, 2008, ASTERISQUE, P117
[20]  
Du H., 2022, arXiv