Breuil-Kisin modules and integral p-adic Hodge theory

被引:3
作者
Gao, Hui [1 ]
Liu, Tong [2 ]
Ozeki, Yoshiyasu [3 ]
机构
[1] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Guangdong, Peoples R China
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[3] Kanagawa Univ, Fac Sci, Dept Math & Phys, 2946 Tsuchiya, Hiratsuka, Kanagawa 2591293, Japan
基金
中国国家自然科学基金;
关键词
Breuil-Kisin modules; integral p-adic Hodge theory; (q); v)-modules; SEMI-STABLE REPRESENTATIONS; GALOIS REPRESENTATIONS; CRYSTALLINE REPRESENTATIONS; LATTICES; (PHI; CONJECTURE; COHOMOLOGY; REDUCTION;
D O I
10.4171/JEMS/1278
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a category of Breuil-Kisin GK-modules to classify integral semi-stable Galois representations. Our theory uses Breuil-Kisin modules and Breuil-Kisin-Fargues modules with Galois actions, and can be regarded as the algebraic avatar of the integral p-adic cohomology theories of Bhatt-Morrow-Scholze and Bhatt-Scholze. As a key ingredient, we classify Galois representations that are of finite E(u)-height.
引用
收藏
页码:3979 / 4032
页数:54
相关论文
共 43 条
[1]   Limits of crystalline representations [J].
Berger, L .
COMPOSITIO MATHEMATICA, 2004, 140 (06) :1473-1498
[2]  
Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202
[3]  
Berger L, 2016, ANN SCI ECOLE NORM S, V49, P947
[4]   MULTIVARIABLE (φ,Γ)-MODULES AND LOCALLY ANALYTIC VECTORS [J].
Berger, Laurent .
DUKE MATHEMATICAL JOURNAL, 2016, 165 (18) :3567-3595
[5]  
Bhatt B., 2019, ANN MATH
[6]  
Bhatt B, 2023, Arxiv, DOI arXiv:2106.14735
[7]  
Bhatt B, 2019, PUBL MATH-PARIS, V129, P199, DOI 10.1007/s10240-019-00106-9
[8]  
Bhatt B, 2018, PUBL MATH-PARIS, V128, P219, DOI 10.1007/s10240-019-00102-z
[9]   A norm field application [J].
Breuil, C .
COMPOSITIO MATHEMATICA, 1999, 117 (02) :189-203
[10]  
Breuil C, 1997, MATH ANN, V307, P191, DOI 10.1007/s002080050031