Distributionally robust optimization based chance-constrained energy management for hybrid energy powered cellular networks

被引:5
|
作者
Du, Pengfei [1 ]
Lei, Hongjiang [2 ]
Ansari, Imran Shafique [3 ]
Du, Jianbo [4 ]
Chu, Xiaoli [5 ]
机构
[1] Xihua Univ, Engn Res Ctr Intelligent Air ground Integrated Veh, Minist Educ, Chengdu 610039, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Chongqing Key Lab Mobile Commun Technol, Chongqing 400065, Peoples R China
[3] Univ Glasgow, James Watt Sch Engn, Glasgow G12 8QQ, Scotland
[4] Xian Univ Posts & Telecommun, Shaanxi Key Lab Informat Commun Network & Secur, Xian 710121, Peoples R China
[5] Univ Sheffield, Elect & Elect Engn, Sheffield S10 2TN, England
基金
中国国家自然科学基金;
关键词
Cellular networks; Energy harvesting; Energy management; Chance-constrained; Distributionally robust optimization;
D O I
10.1016/j.dcan.2022.06.001
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Energy harvesting has been recognized as a promising technique with which to effectively reduce carbon emissions and electricity expenses of base stations. However, renewable energy is inherently stochastic and intermittent, imposing formidable challenges on reliably satisfying users' time-varying wireless traffic demands. In addition, the probability distribution of the renewable energy or users' wireless traffic demand is not always fully known in practice. In this paper, we minimize the total energy cost of a hybrid-energy-powered cellular network by jointly optimizing the energy sharing among base stations, the battery charging and discharging rates, and the energy purchased from the grid under the constraint of a limited battery size at each base station. In solving the formulated non-convex chance-constrained stochastic optimization problem, a new ambiguity set is built to characterize the uncertainties in the renewable energy and wireless traffic demands according to interval sets of the mean and covariance. Using this ambiguity set, the original optimization problem is transformed into a more tractable second-order cone programming problem by exploiting the distributionally robust optimization approach. Furthermore, a low-complexity distributionally robust chance-constrained energy management algorithm, which requires only interval sets of the mean and covariance of stochastic parameters, is proposed. The results of extensive simulation are presented to demonstrate that the proposed algorithm outperforms existing methods in terms of the computational complexity, energy cost, and reliability.
引用
收藏
页码:797 / 808
页数:12
相关论文
共 50 条
  • [1] Distributionally robust chance-constrained energy management of an integrated retailer in the multi-energy market
    Zhou, Yuqi
    Yu, Wenbin
    Zhu, Shanying
    Yang, Bo
    He, Jianping
    APPLIED ENERGY, 2021, 286
  • [2] Day-ahead Chance-constrained Energy Management of Energy Hubs: A Distributionally Robust Approach
    Cao, Jiaxin
    Yang, Bo
    Zhu, Shanying
    Ning, Chao
    Guan, Xinping
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2022, 8 (03) : 812 - 825
  • [3] Distributionally Robust Two-Stage Energy Management for Hybrid Energy Powered Cellular Networks
    Du, Pengfei
    Li, Bin
    Zeng, Qi
    Zhai, Daosen
    Zhou, Di
    Ran, Li
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 12162 - 12174
  • [4] DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINED MINIMUM VARIANCE BEAMFORMING
    Zhang, Xiao
    Feng, Qiang
    Ge, Ning
    Lu, Jianhua
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2881 - 2885
  • [5] The Distributionally Robust Chance-Constrained Vehicle Routing Problem
    Ghosal, Shubhechyya
    Wiesemann, Wolfram
    OPERATIONS RESEARCH, 2020, 68 (03) : 716 - 732
  • [6] Data-driven distributionally robust chance-constrained optimization with Wasserstein metric
    Ran Ji
    Miguel A. Lejeune
    Journal of Global Optimization, 2021, 79 : 779 - 811
  • [7] Data-driven distributionally robust chance-constrained optimization with Wasserstein metric
    Ji, Ran
    Lejeune, Miguel A.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (04) : 779 - 811
  • [8] Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems
    Xiaojiao Tong
    Hailin Sun
    Xiao Luo
    Quanguo Zheng
    Journal of Global Optimization, 2018, 70 : 131 - 158
  • [9] Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems
    Tong, Xiaojiao
    Sun, Hailin
    Luo, Xiao
    Zheng, Quanguo
    JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (01) : 131 - 158
  • [10] Wasserstein distributionally robust chance-constrained program with moment information
    Luo, Zunhao
    Yin, Yunqiang
    Wang, Dujuan
    Cheng, T. C. E.
    Wu, Chin -Chia
    COMPUTERS & OPERATIONS RESEARCH, 2023, 152