Truncated nonsmooth Newton multigrid for phase-field brittle-fracture problems, with analysis

被引:4
|
作者
Graeser, Carsten [1 ]
Kienle, Daniel [2 ]
Sander, Oliver [3 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, Cauerstr 11, D-91058 Erlangen, Germany
[2] Univ Stuttgart, Inst Angew Mech, Pfaffenwaldring 7, D-70569 Stuttgart, Germany
[3] Tech Univ Dresden, Inst Numer Math, Zellescher Weg 12-14, D-01069 Dresden, Germany
关键词
Phase-field; Brittle fracture; Spectral strain decomposition; Convex analysis; Nonsmooth multigrid; Global convergence; FINITE-ELEMENT APPROXIMATION; NUMERICAL IMPLEMENTATION; DAMAGE MODELS; FORMULATION; ALGORITHM;
D O I
10.1007/s00466-023-02330-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose the truncated nonsmooth Newton multigrid method (TNNMG) as a solver for the spatial problems of the small-strain brittle-fracture phase-field equations. TNNMG is a nonsmooth multigrid method that can solve biconvex, block-separably nonsmooth minimization problems with linear time complexity. It exploits the variational structure inherent in the problem, and handles the pointwise irreversibility constraint on the damage variable directly, without regularization or the introduction of a local history field. In the paper we introduce the method and show how it can be applied to several established models of phase-field brittle fracture. We then prove convergence of the solver to a solution of the nonsmooth Euler-Lagrange equations of the spatial problem for any load and initial iterate. On the way, we show several crucial convexity and regularity properties of the models considered here. Numerical comparisons to an operator-splitting algorithm show a considerable speed increase, without loss of robustness.
引用
收藏
页码:1059 / 1089
页数:31
相关论文
共 50 条
  • [1] Truncated nonsmooth Newton multigrid for phase-field brittle-fracture problems, with analysis
    Carsten Gräser
    Daniel Kienle
    Oliver Sander
    Computational Mechanics, 2023, 72 : 1059 - 1089
  • [2] Truncated Nonsmooth Newton Multigrid Methods for Convex Minimization Problems
    Graeser, Carsten
    Sack, Uli
    Sander, Oliver
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XVIII, 2009, 70 : 129 - 136
  • [3] Truncated nonsmooth Newton multigrid methods for block-separable minimization problems
    Graeser, Carsten
    Sander, Oliver
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (01) : 454 - 481
  • [4] Matrix-free multigrid solvers for phase-field fracture problems
    Jodlbauer, D.
    Langer, U.
    Wick, T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372 (372)
  • [5] The phase-field fracture model enriched by interpolation cover functions for brittle fracture problems
    Wang, Jiye
    Zhou, Liming
    Gao, Zhiqiang
    Liu, Peng
    THIN-WALLED STRUCTURES, 2024, 197
  • [6] A phase-field description of dynamic brittle fracture
    Borden, Michael J.
    Verhoosel, Clemens V.
    Scott, Michael A.
    Hughes, Thomas J. R.
    Landis, Chad M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 : 77 - 95
  • [7] Validation of the Phase-Field Model for Brittle Fracture
    Seles, Karlo
    Tomic, Zoran
    Tonkovic, Zdenko
    Gubeljak, Nenad
    23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 1721 - 1727
  • [8] Phase-field models for brittle and cohesive fracture
    Vignollet, Julien
    May, Stefan
    de Borst, Rene
    Verhoosel, Clemens V.
    MECCANICA, 2014, 49 (11) : 2587 - 2601
  • [9] A STUDY ON PHASE-FIELD MODELS FOR BRITTLE FRACTURE
    Zhang, Fei
    Huang, Weizhang
    LI, Xianping
    Zhang, Shicheng
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (06) : 793 - 821
  • [10] Phase-field models for brittle and cohesive fracture
    Julien Vignollet
    Stefan May
    René de Borst
    Clemens V. Verhoosel
    Meccanica, 2014, 49 : 2587 - 2601