ON THE EIGENVALUE SET OF THE (p, q)-LAPLACIAN WITH A NEUMANN-STEKLOV BOUNDARY CONDITION

被引:0
作者
Barbu, Luminita [1 ]
Morosanu, Gheorghe [2 ,3 ]
机构
[1] Ovidius Univ, Fac Math & Informat, 124 Mamaia Blvd, Constanta 900527, Romania
[2] Babes Bolyai Univ, Fac Math & Comp Sci, 1 M Kogalniceanu Str, Cluj Napoca 400084, Romania
[3] Acad Romanian Scientists, 3 Ilfov Str,Sect 5, Bucharest, Romania
关键词
ELLIPTIC-EQUATIONS; INDEFINITE;
D O I
10.57262/die036-0506-437
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider in a bounded domain Omega subset of R-N, N >= 2, with smooth boundary.O, the following eigenvalue problem -Delta(p)u -Delta(q)u =lambda a(x)|u|(r-2) u in Omega, |del u|(p-2) + |.del u|(q-2) )partial derivative u/partial derivative v=lambda b(x)|u|(r-2) u on partial derivative Omega, where 1 < q < r < p < infinity, with r < q(N - 1)/(N - q) if q < N; a is an element of L-infinity(Omega), b is an element of L-infinity(partial derivative Omega) are given nonnegative functions satisfying integral(Omega) a dx + integral(partial derivative Omega) b d sigma > 0. Under these assumptions, we prove that there exist two positive constants lambda(*) <lambda(*) such that any lambda is an element of {0}boolean OR [lambda*,infinity) is an eigenvalue of this problem, while the set (-infinity, 0)boolean OR(0,lambda(*)) contains no eigenvalue of the problem. This result is complementary to previous results related to the above eigenvalue problem.
引用
收藏
页码:437 / 452
页数:16
相关论文
共 28 条
[1]   GENERALIZED EIGENVALUES OF THE (P, 2)-LAPLACIAN UNDER A PARAMETRIC BOUNDARY CONDITION [J].
Abreu, Jamil ;
Madeira, Gustavo F. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (01) :287-303
[2]   Full description of the eigenvalue set of the Steklov (p, q)-Laplacian [J].
Barbu, Luminita ;
Morosanu, Gheorghe .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 :1-16
[3]   On a Steklov eigenvalue problem associated with the (p, q)-Laplacian [J].
Barbu, Luminita ;
Morosanu, Gheorghe .
CARPATHIAN JOURNAL OF MATHEMATICS, 2021, 37 (02) :161-171
[4]   Eigenvalues of the negative (p,q)-Laplacian under a Steklov-like boundary condition [J].
Barbu, Luminita ;
Morosanu, Gheorghe .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (04) :685-700
[5]   Solitons in several space dimensions: Derrick's problem and infinitely many solutions [J].
Benci, V ;
D'Avenia, P ;
Fortunato, D ;
Pisani, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) :297-324
[6]   On the Electrostatic Born-Infeld Equation with Extended Charges [J].
Bonheure, Denis ;
d'Avenia, Pietro ;
Pomponio, Alessio .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (03) :877-906
[7]   An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities [J].
Brasco, Lorenzo ;
Franzina, Giovanni .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (06) :1795-1830
[8]  
Brezis Haim., 2010, Functional analysis, Sobolev spaces and partial differential equations
[9]   A GREEN FORMULA FOR QUASILINEAR ELLIPTIC-OPERATORS [J].
CASAS, E ;
FERNANDEZ, LA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 142 (01) :62-73
[10]   On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian [J].
Cherfils, L ;
Il'Yasov, Y .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :9-22