Affine-periodic orbits for linear dynamical systems

被引:0
作者
Yang, Xue [1 ,2 ]
Cheng, Ming [1 ]
Li, Yong [1 ,2 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Northeast Normal Univ, Ctr Math & Interdisciplinary Sci, Changchun 130024, Peoples R China
关键词
fixed-point theorems; affine-periodic orbit; massera-type criterion; linear dynamical system; FUNCTIONAL-DIFFERENTIAL EQUATIONS; AUTOMORPHIC SOLUTIONS; NONLINEAR-SYSTEMS; MASSERA CRITERION; EXISTENCE; THEOREMS;
D O I
10.1002/mma.8967
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We observe the relationship between forward bounded orbits and affine periodic orbits for infinite-dimensional linear dynamical systems and prove a Massera type criterion, which asserts that a forward bounded orbit implies the existence of affine periodic orbits. Such an affine-periodic orbit might be periodic, quasi(almost)-periodic, or spiral one. We also give an analog for hybrid (switching) discrete dynamical systems.
引用
收藏
页码:7230 / 7238
页数:9
相关论文
共 42 条
[1]  
Benkhalti R., 2000, DYNAM SYSTEMS APPL, V9, P221
[2]   Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition. I [J].
Caraballo, Tomas ;
Cheban, David .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :108-128
[3]   Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard's separation condition. II [J].
Caraballo, Tomas ;
Cheban, David .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (03) :1164-1186
[4]   Rotating periodic solutions for second-order dynamical systems with singularities of repulsive type [J].
Chang, Xiaojun ;
Li, Yong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (08) :3092-3099
[5]   ROTATING PERIODIC SOLUTIONS OF SECOND ORDER DISSIPATIVE DYNAMICAL SYSTEMS [J].
Chang, Xiaojun ;
Li, Yong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (02) :643-652
[6]   AFFINE-PERIODIC SOLUTIONS AND PSEUDO AFFINE-PERIODIC SOLUTIONS FOR DIFFERENTIAL EQUATIONS WITH EXPONENTIAL DICHOTOMY AND EXPONENTIAL TRICHOTOMY [J].
Cheng, Cheng ;
Huang, Fushan ;
Li, Yong .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04) :950-967
[7]   REMARKS ON ONE-DIMENSIONAL DELAY-DIFFERENTIAL EQUATIONS [J].
CHOW, SN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 41 (02) :426-429
[8]   SEMI-LINEAR FUNCTIONAL-DIFFERENTIAL EQUATIONS IN BANACH-SPACE [J].
FITZGIBBON, WE .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 29 (01) :1-14
[9]   (Q, T)-affine-periodic solutions and Pseudo (Q, T affine-periodic solutions for Dynamic Equations on Time Scales [J].
Guo, Ruichao ;
Jiang, Xiaomeng ;
Wang, Hongren .
JOURNAL OF MATHEMATICS, 2022, 2022
[10]  
Henry D, 1981, GEOMETRIC THEORY SEM, V840, DOI [10.1007/BFb0089647, DOI 10.1007/BFB0089647]