Enhanced capacity and thermal safety of lithium-ion battery graphite anodes with conductive binder

被引:21
作者
Gribble, Daniel A. [1 ]
McCulfor, Evan [1 ]
Li, Zheng [1 ]
Parekh, Mihit [1 ]
Pol, Vilas G. [1 ]
机构
[1] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Conducting polymer binder; Thermal runaway; Lithium-ion batteries; Graphite anode; Differential scanning calorimetry; SEI decomposition; DIFFERENTIAL SCANNING CALORIMETRY; PEDOT PSS; STABILITY; ELECTROLYTE; ADDITIVES; RUNAWAY; REACTIVITY; CATHODE; FIRE;
D O I
10.1016/j.jpowsour.2022.232204
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal safety is critical for marketable batteries. Numerous safety incidents from graphite anode instability impede lithium-ion battery (LIB) use for large-scale energy storage. Herein, we compare thermal safety and electrochemical performance of graphite anodes with commercial conducting polymer poly (3,4-ethyl-enedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and standard polyvinylidene fluoride (PVDF) binders. Thermal analyses with differential scanning calorimetry (DSC) elucidates thermal runaway mechanisms. Reduced wettability of the PEDOT:PSS binder and lower specific surface area of the graphite anode composite contributes to less heat generation from solid electrolyte interphase (SEI) decomposition as compared to PVDF between 100 and 150 degrees C, particularly when carbon black (CB) additive is excluded, evolving 143, 37.5, and 102 J g(-1) for PVDF/CB, PEDOT:PSS, and PEDOT:PSS/CB composite binders, respectively. Additionally, conducting binders provide enhanced stability against LiXC6, generating less than 16% of the 728 J g(-1) from the PVDF/CB graphite anode. In full-cell thermal safety studies with LiCoO2 (LCO) cathode using multimode calorimetry (MMC), this reduces heat generation at temperatures (<140 degrees C) where thermal runaway may still be circum-vented. Electrochemical performance is not sacrificed as PEDOT:PSS/CB provides improved capacity (400 vs. 360 mAh g(-1) after 100 cycles at C/5) and kinetics (260 and 189 mAh g(-1) at 1C) over PVDF/CB.
引用
收藏
页数:9
相关论文
共 47 条
[1]   Mechanistic elucidation of thermal runaway in potassium-ion batteries [J].
Adams, Ryan A. ;
Varma, Arvind ;
Pol, Vilas G. .
JOURNAL OF POWER SOURCES, 2018, 375 :131-137
[2]   Commercial expanded graphite as a low cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte [J].
An, Yongling ;
Fei, Huifang ;
Zeng, Guifang ;
Ci, Lijie ;
Xi, Baojuan ;
Xiong, Shenglin ;
Feng, Jinkui .
JOURNAL OF POWER SOURCES, 2018, 378 :66-72
[3]   Electrochemical and thermal behavior of LiNi1-zMzO2 (M = Co, Mn, Ti) [J].
Arai, H ;
Okada, S ;
Sakurai, Y ;
Yamaki, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :3117-3125
[4]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334
[5]   Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter [J].
Chen, Mingyi ;
Zhou, Dechuang ;
Chen, Xiao ;
Zhang, Wenxia ;
Liu, Jiahao ;
Yuen, Richard ;
Wang, Jian .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 122 (02) :755-763
[6]   Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material [J].
Cho, JP ;
Park, B .
JOURNAL OF POWER SOURCES, 2001, 92 (1-2) :35-39
[7]   THERMAL-STABILITY OF LIXCOO2, LIXNIO2 AND LAMBDA-MNO2 AND CONSEQUENCES FOR THE SAFETY OF LI-ION CELLS [J].
DAHN, JR ;
FULLER, EW ;
OBROVAC, M ;
VONSACKEN, U .
SOLID STATE IONICS, 1994, 69 (3-4) :265-270
[8]   PEDOT: PSS as a Functional Binder for Cathodes in Lithium Ion Batteries [J].
Das, Pratik R. ;
Komsiyska, Lidiya ;
Osters, Oliver ;
Wittstock, Gunther .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04) :A674-A678
[9]   Effects of additives on thermal stability of Li ion cells [J].
Doughty, DH ;
Roth, EP ;
Crafts, CC ;
Nagasubramanian, G ;
Henriksen, G ;
Amine, K .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :116-120
[10]  
Du Pasquier A, 1998, J ELECTROCHEM SOC, V145, P472