A Semi-Analytical Method for Solving Nonlinear Fractional-Order Swift-Hohenberg Equations

被引:0
作者
Jasrotia, Shabnam [1 ]
Singh, Prince [1 ]
机构
[1] Lovely Profess Univ, Sch Chem Engn & Phys Sci, Dept Math, Phagwara 144411, Punjab, India
来源
CONTEMPORARY MATHEMATICS | 2023年 / 4卷 / 04期
关键词
fractional-order Swift-Hohenberg (S-H) equations; Liouville-Caputo fractional order derivative; Laplace transform; homotopy perturbation method;
D O I
10.37256/cm.4420232811
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we find approximate series solutions to fractional-order Swift-Hohenberg equations by using the hybrid method, i.e., accelerated homotopy perturbation transformation method (AHPTM). The accelerated homotopy perturbation method was merged with the Laplace transform to create the proposed method. We also compare the results of our proposed method with the exact solution and demonstrate that it is the useful tool for tackling nonlinear problems of fractional order. Results are presented through graphs using Mathematica software.
引用
收藏
页码:1062 / 1075
页数:14
相关论文
共 50 条
  • [21] A Fifth-Order Iterative Method for Solving Nonlinear Equations
    Rafiullah, M.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2011, 4 (03) : 239 - 243
  • [22] Adapting semi-analytical treatments to the time-fractional derivative Gardner and Cahn-Hilliard equations
    Hassan, A.
    Arafa, A. A. M.
    Rida, S. Z.
    Dagher, M. A.
    El Sherbiny, H. M.
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 87 : 389 - 397
  • [23] Stability analysis of semi-analytical technique for time-fractional Cauchy reaction-diffusion equations
    Ullah, Saif
    Ali, Rahat
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2025, 80 (03): : 199 - 214
  • [24] Solution to fractional-order Riccati differential equations using Euler wavelet method
    Dincel, A. T.
    SCIENTIA IRANICA, 2019, 26 (03) : 1608 - 1616
  • [25] On the Approximation of Fractional-Order Differential Equations Using Laplace Transform and Weeks Method
    Kamran
    Khan, Sharif Ullah
    Haque, Salma
    Mlaiki, Nabil
    SYMMETRY-BASEL, 2023, 15 (06):
  • [26] Analytical Solutions of Fractional Order Diffusion Equations by Natural Transform Method
    Kamal Shah
    Hammad Khalil
    Rahmat Ali Khan
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 1479 - 1490
  • [27] Analytical Solutions of Fractional Order Diffusion Equations by Natural Transform Method
    Shah, Kamal
    Khalil, Hammad
    Khan, Rahmat Ali
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1479 - 1490
  • [28] Comparison of three semi-analytical methods for solving (1+1)-dimensional dispersive long wave equations
    Ugurlu, Yavuz
    Kaya, Dogan
    Inan, Ibrahim E.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (05) : 1278 - 1290
  • [29] A Wavelet Numerical Method for Solving Nonlinear Fractional Vibration, Diffusion and Wave Equations
    Zhou, Y. H.
    Wang, X. M.
    Wang, J. Z.
    Liu, X. J.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2011, 77 (02): : 137 - 160
  • [30] Modification of the Optimal Auxiliary Function Method for Solving Fractional Order KdV Equations
    Ullah, Hakeem
    Fiza, Mehreen
    Khan, Ilyas
    Alshammari, Nawa
    Hamadneh, Nawaf N.
    Islam, Saeed
    FRACTAL AND FRACTIONAL, 2022, 6 (06)