A Semi-Analytical Method for Solving Nonlinear Fractional-Order Swift-Hohenberg Equations

被引:0
作者
Jasrotia, Shabnam [1 ]
Singh, Prince [1 ]
机构
[1] Lovely Profess Univ, Sch Chem Engn & Phys Sci, Dept Math, Phagwara 144411, Punjab, India
来源
CONTEMPORARY MATHEMATICS | 2023年 / 4卷 / 04期
关键词
fractional-order Swift-Hohenberg (S-H) equations; Liouville-Caputo fractional order derivative; Laplace transform; homotopy perturbation method;
D O I
10.37256/cm.4420232811
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we find approximate series solutions to fractional-order Swift-Hohenberg equations by using the hybrid method, i.e., accelerated homotopy perturbation transformation method (AHPTM). The accelerated homotopy perturbation method was merged with the Laplace transform to create the proposed method. We also compare the results of our proposed method with the exact solution and demonstrate that it is the useful tool for tackling nonlinear problems of fractional order. Results are presented through graphs using Mathematica software.
引用
收藏
页码:1062 / 1075
页数:14
相关论文
共 33 条
[1]   An Attractive Approach Associated with Transform Functions for Solving Certain Fractional Swift-Hohenberg Equation [J].
Alaroud, Mohammad ;
Tahat, Nedal ;
Al-Omari, Shrideh ;
Suthar, D. L. ;
Gulyaz-Ozyurt, Selma .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[2]   Analytical solution of non-linear fractional order Swift-Hohenberg equations [J].
Alrabaiah, Hussam ;
Ahmad, Israr ;
Shah, Kamal ;
Mahariq, Ibrahim ;
Rahman, Ghaus Ur .
AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (03) :3099-3107
[3]   Some existence results on nonlinear fractional differential equations [J].
Baleanu, Dumitru ;
Rezapour, Shahram ;
Mohammadi, Hakimeh .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1990)
[4]   HE'S HOMOTOPY PERTURBATION METHOD FOR SOLVING TIME FRACTIONAL SWIFT-HOHENBERG EQUATIONS [J].
Ban, Tao ;
Cui, Run-Qing .
THERMAL SCIENCE, 2018, 22 (04) :1601-1605
[5]   Unexpected behavior of Caputo fractional derivative [J].
Bazaglia Kuroda, Lucas Kenjy ;
Gomes, Arianne Vellasco ;
Tavoni, Robinson ;
de Arruda Mancera, Paulo Fernando ;
Varalta, Najla ;
Camargo, Rubens de Figueiredo .
COMPUTATIONAL & APPLIED MATHEMATICS, 2017, 36 (03) :1173-1183
[6]  
Caputo M., 1969, Elasticita e Dissipazione
[7]   Fractional-order variational optical flow model for motion estimation [J].
Chen, Dali ;
Sheng, Hu ;
Chen, YangQuan ;
Xue, Dingyu .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1990)
[8]  
El-Kalla L, 2012, J. Fract. Calc. Appl, V3, P1, DOI 10.21608/jfca.2012.289931
[9]  
HUSEEN S, 2022, INT J NONLINEAR ANAL, V13, P2669, DOI DOI 10.22075/ijnaa.2022.26557.3384
[10]  
Jani HP., 2022, INT J NONLINEAR ANAL, V1, P1005, DOI DOI 10.22075/IJNAA.2022.27904.3754