Digital polycrystalline microstructure generation using diffusion probabilistic models

被引:7
作者
Fernandez-Zelaia, Patxi [1 ]
Cheng, Jiahao [1 ]
Mayeur, Jason [1 ]
Ziabari, Amir Koushyar [2 ]
Kirka, Michael M. [1 ]
机构
[1] Oak Ridge Natl Lab, Mfg Sci Div, Oak Ridge, TN 37748 USA
[2] Oak Ridge Natl Lab, Electrificat & Energy Infrastruct Div, Oak Ridge, TN USA
关键词
Microstructure; Machine learning; Generative modeling; ICME;
D O I
10.1016/j.mtla.2023.101976
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate micromechanical simulation of polycrystalline materials requires a realistic digital representation of the grain scale microstructure. This work demonstrates the use of a generative diffusion probabilistic model for synthesizing single phase polycrystalline realizations. The model performs well and is capable of producing realistic microstructures consisting of not just simple equiaxed structures but also structures exhibiting more complex spatial arrangements. Masked microstructure generation reveals that the model is context aware of morphological descriptors which may be encoded in the latent space. Training on more diverse data sets, with scaled up architectures, may enable development of future models capable of synthesizing even more complex microstructural features.
引用
收藏
页数:11
相关论文
共 56 条
  • [1] Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
  • [2] Finite approximations to the second-order properties closure in single phase polycrystals
    Adams, BL
    Gao, X
    Kalidindi, SR
    [J]. ACTA MATERIALIA, 2005, 53 (13) : 3563 - 3577
  • [3] Alaa AM, 2022, PR MACH LEARN RES, P290
  • [4] Alverson Michael, 2022, Generative adversarial networks and diffusion models in material discovery
  • [5] Data-driven high-fidelity 2D microstructure reconstruction via non-local patch-based image inpainting
    Anh Tran
    Hoang Tran
    [J]. ACTA MATERIALIA, 2019, 178 : 207 - 218
  • [6] Texture Analysis with MTEX - Free and Open Source Software Toolbox
    Bachmann, F.
    Hielscher, R.
    Schaeben, H.
    [J]. TEXTURE AND ANISOTROPY OF POLYCRYSTALS III, 2010, 160 : 63 - +
  • [7] Bunge H.J., 2013, Texture Analysis in Materials Science: Mathematical Methods
  • [8] Depriester D., 2020, J. Open Source Softw., V5, P2094, DOI [10.21105/joss.02094, DOI 10.21105/JOSS.02094]
  • [9] Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
  • [10] Conditional diffusion-based microstructure reconstruction
    Duereth, Christian
    Seibert, Paul
    Ruecker, Dennis
    Handford, Stephanie
    Kaestner, Markus
    Gude, Maik
    [J]. MATERIALS TODAY COMMUNICATIONS, 2023, 35