Quantum optical memory for entanglement distribution

被引:43
作者
Lei, Yisheng [1 ,2 ,3 ,4 ]
Asadi, Faezeh kimiaee [5 ,6 ]
Zhong, Tian [7 ]
Kuzmich, Alex [8 ]
Simon, Christoph [5 ,6 ]
Hosseini, Mahdi [1 ,2 ,3 ,4 ]
机构
[1] Purdue Univ, Elmore Family Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Dept Phys & Astron, W Lafayette, IN 47907 USA
[3] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
[4] Northwestern Univ, Appl Phys Program, Evanston, IL 60208 USA
[5] Univ Calgary, Inst Quantum Sci & Technol, 2500 Univ Drive NW, Calgary, AB T2N 1N4, Canada
[6] Univ Calgary, Dept Phys & Astron, 2500 Univ Drive NW, Calgary, AB T2N 1N4, Canada
[7] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[8] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
ELECTROMAGNETICALLY INDUCED TRANSPARENCY; LIGHT-MATTER INTERFACE; HERALDED ENTANGLEMENT; ATOMIC ENSEMBLES; SINGLE-ATOM; COHERENCE TIME; PHOTON; EFFICIENT; STATE; STORAGE;
D O I
10.1364/OPTICA.493732
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical photons are powerful carriers of quantum information, which can be delivered in free space by satellites or in fibers on the ground over long distances. Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing. Quantum optical memories are devices designed to store quantum information in the form of stationary excitations, such as atomic coherence, and are capable of coherently mapping these excitations to flying qubits. Quantum memories can effectively store and manipulate quantum states, making them indispensable elements in future long-distance quantum networks. Over the past two decades, quantum optical memories with high fidelities, high efficiencies, long storage times, and promising multiplexing capabilities have been developed, especially at the single-photon level. In this review, we introduce the working principles of commonly used quantum memory protocols and summarize the recent advances in quantum memory demonstrations. We also offer a vision for future quantum optical memory devices that may enable entanglement distribution over long distances. (c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:1511 / 1528
页数:18
相关论文
共 263 条
[1]   Impedance-matched cavity quantum memory [J].
Afzelius, Mikael ;
Simon, Christoph .
PHYSICAL REVIEW A, 2010, 82 (02)
[2]   Multimode quantum memory based on atomic frequency combs [J].
Afzelius, Mikael ;
Simon, Christoph ;
de Riedmatten, Hugues ;
Gisin, Nicolas .
PHYSICAL REVIEW A, 2009, 79 (05)
[3]   A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band [J].
Albrecht, Boris ;
Farrera, Pau ;
Fernandez-Gonzalvo, Xavier ;
Cristiani, Matteo ;
de Riedmatten, Hugues .
NATURE COMMUNICATIONS, 2014, 5 :3376
[4]   Photon echoes produced by switching electric fields [J].
Alexander, AL ;
Longdell, JJ ;
Sellars, MJ ;
Manson, NB .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[5]   Highly efficient frequency conversion with bandwidth compression of quantum light [J].
Allgaier, Markus ;
Ansari, Vahid ;
Sansoni, Linda ;
Eigner, Christof ;
Quiring, Viktor ;
Ricken, Raimund ;
Harder, Georg ;
Brecht, Benjamin ;
Silberhorn, Christine .
NATURE COMMUNICATIONS, 2017, 8
[6]   Five-second coherence of a single spin with single-shot readout in silicon carbide [J].
Anderson, Christopher P. ;
Glen, Elena O. ;
Zeledon, Cyrus ;
Bourassa, Alexandre ;
Jin, Yu ;
Zhu, Yizhi ;
Vorwerk, Christian ;
Crook, Alexander L. ;
Abe, Hiroshi ;
Ul-Hassan, Jawad ;
Ohshima, Takeshi ;
Son, Nguyen T. ;
Galli, Giulia ;
Awschalom, David D. .
SCIENCE ADVANCES, 2022, 8 (05)
[7]   Electrical and optical control of single spins integrated in scalable semiconductor devices [J].
Anderson, Christopher P. ;
Bourassa, Alexandre ;
Miao, Kevin C. ;
Wolfowicz, Gary ;
Mintun, Peter J. ;
Crook, Alexander L. ;
Abe, Hiroshi ;
Ul Hassan, Jawad ;
Son, Nguyen T. ;
Ohshima, Takeshi ;
Awschalom, David D. .
SCIENCE, 2019, 366 (6470) :1225-+
[8]   Stark echo modulation for quantum memories [J].
Arcangeli, A. ;
Ferrier, A. ;
Goldner, Ph. .
PHYSICAL REVIEW A, 2016, 93 (06)
[9]   Quantum repeaters with individual rare-earth ions at telecommunication wavelengths [J].
Asadi, F. Kimiaee ;
Lauk, N. ;
Wein, S. ;
Sinclair, N. ;
O'Brien, C. ;
Simon, C. .
QUANTUM, 2018, 2
[10]   Protocols for long-distance quantum communication with single 167Er ions [J].
Asadi, F. Kimiaee ;
Wein, S. C. ;
Simon, C. .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)