Comparative transcriptome analysis of gene responses of salt-tolerant and salt-sensitive rice cultivars to salt stress

被引:14
|
作者
Fang, Xin [1 ]
Mo, Junjie [1 ,2 ]
Zhou, Hongkai [1 ,2 ]
Shen, Xuefeng [1 ,2 ]
Xie, Yuling [1 ]
Xu, Jianghuan [1 ]
Yang, Shan [1 ,2 ]
机构
[1] Guangdong Ocean Univ, Coll Coastal Agr Sci, Zhanjiang 524088, Peoples R China
[2] Natl Saline Alkali Tolerant Rice Technol Innovat C, South China Branch, Zhanjiang 524088, Peoples R China
关键词
GROWTH; IDENTIFICATION; ANNOTATION; METABOLISM; EXPRESSION; PROGRAM;
D O I
10.1038/s41598-023-46389-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Salt stress is one unfavorable factor of global climate change that adversely affects rice plant growth and yield. To identify novel salt-tolerant genes and new varieties of salt-tolerant rice, a better understanding of the molecular regulation mechanism of salt tolerance in rice is needed. In this study we used transcriptome analyses to examine changes in gene expression of salt-tolerant and salt-sensitive rice plants. The salt-tolerant cultivar HH11 and salt-sensitive cultivar IR29 were treated with 200 mM NaCl solution for 0 h, 6 h, 24 h and 48 h at the three leaf stage. Physiological parameters and transcriptome were measured and analyzed after each treatment. Activity of SOD and POD, as well as the MDA and protein content of the two rice cultivars generally increased with increasing time of exposure to NaCl. Meanwhile, the APX activity first increased, then decreased in both cultivars, with maximum values seen at 6 h for IR29 and at 24 h for HH11. The GR and GPX activity of HH11 were stronger than that of IR29 in response to salt stress. The H2O2 content first increased at 0-6 h, then decreased at 6-24 h, and then increased again at 24-48 h under salt stress. Compared with IR29, SOD, POD and APX activity of HH11 was more sluggish in response to salt stress, reaching the maximum at 24 h or 48 h. The MDA, H2O2 and proline content of HH11 was lower than that of IR29 under salt stress. Relative to untreated HH11 plants (0 h) and those exposed to salt for 6 h, 24 h, and 48 h (H0-H6, H0-H24 and H0-H48), 7462, 6363 and 6636, differentially expressed genes (DEGs), respectively, were identified. For IR29, the respective total DEGs were 7566, 6075 and 6136. GO and KEGG enrichment analysis showed that metabolic pathways related to antioxidative responses and osmotic balance played vital roles in salt stress tolerance. Sucrose and starch metabolism, in addition to flavonoid biosynthesis and glutathione metabolism, showed positive responses to salt stress. Expression of two SPS genes (LOC_Os01g69030 and LOC_Os08g20660) and two GST genes (LOC_Os06g12290 and LOC_Os10g38740) was up-regulated in both HH11 and IR29, whereas expression of LOC_Os09g12660, a glucose-1-phosphate adenylyltransferase gene, and two SS genes (LOC_Os04g17650 and LOC_Os04g24430) was up-regulated differential expression in HH11. The results showed that HH11 had more favorable adjustment in antioxidant and osmotic activity than IR29 upon exposure to salt stress, and highlighted candidate genes that could play roles in the function and regulation mechanism of salt tolerance in rice.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Transcriptome analysis reveals that distinct metabolic pathways operate in salt-tolerant and salt-sensitive upland cotton varieties subjected to salinity stress
    Guo, Jinyan
    Shi, Gongyao
    Guo, Xiaoyan
    Zhang, Liwei
    Xu, Wenying
    Wang, Yumei
    Su, Zhen
    Hua, Jinping
    PLANT SCIENCE, 2015, 238 : 33 - 45
  • [42] Effects of NaCl stress on photochemical activity and thylakoid membrane polypeptide composition of a salt-tolerant and a salt-sensitive rice cultivar
    Wang, R. L.
    Hua, C.
    Zhou, F.
    Zhou, Q. -C.
    PHOTOSYNTHETICA, 2009, 47 (01) : 125 - 127
  • [43] Comparative Transcriptomic Profiling of a Salt-Tolerant Wild Tomato Species and a Salt-Sensitive Tomato Cultivar
    Sun, Wei
    Xu, Xinna
    Zhu, Huishan
    Liu, Aihua
    Liu, Lei
    Li, Junming
    Hua, Xuejun
    PLANT AND CELL PHYSIOLOGY, 2010, 51 (06) : 997 - 1006
  • [44] Long-term culture modifies the salt responses of callus lines of salt-tolerant and salt-sensitive tomato species
    Rus, AM
    Rios, S
    Olmos, E
    Santa-Cruz, A
    Bolarin, MC
    JOURNAL OF PLANT PHYSIOLOGY, 2000, 157 (04) : 413 - 420
  • [45] Comparative Studies on the Physiobiochemical, Enzymatic, and Ionic Modifications in Salt-tolerant and Salt-sensitive Citrus Rootstocks under NaCl Stress
    Balal, Rashad M.
    Khan, Muhammad M.
    Shahid, Muhammad A.
    Mattson, Neil S.
    Abbas, Tahira
    Ashfaq, Muhammad
    Garcia-Sanchez, Franscisco
    Ghazanfer, Usman
    Gimeno, Vicente
    Iqbal, Zafar
    JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE, 2012, 137 (02) : 86 - 95
  • [46] Anti-oxidative responses of salt-tolerant and salt-sensitive pepper (Capsicum annuum L.) genotypes grown under salt stress
    Aktas, H.
    Abak, K.
    Eker, S.
    JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2012, 87 (04): : 360 - 366
  • [47] Analysis by two-dimensional electrophoresis of the effect of salt stress on the polypeptide patterns in roots of a salt-tolerant and a salt-sensitive cultivar of wheat
    Majoul, T
    Chahed, K
    Zamiti, E
    Ouelhazi, L
    Ghrir, R
    ELECTROPHORESIS, 2000, 21 (12) : 2562 - 2565
  • [48] MOLECULAR AND PHYSIOLOGICAL-RESPONSES TO ABSCISIC-ACID AND SALTS IN ROOTS OF SALT-SENSITIVE AND SALT-TOLERANT INDICA RICE VARIETIES
    MOONS, A
    BAUW, G
    PRINSEN, E
    VANMONTAGU, M
    Van Der Straeten, D
    PLANT PHYSIOLOGY, 1995, 107 (01) : 177 - 186
  • [49] Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes
    Neto, ADD
    Prisco, JT
    Enéas, J
    de Abreu, CEB
    Gomes, E
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2006, 56 (01) : 87 - 94
  • [50] Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI
    Kader, MA
    Lindberg, S
    JOURNAL OF EXPERIMENTAL BOTANY, 2005, 56 (422) : 3149 - 3158