Dense deep transformer for medical image segmentation: DDTraMIS

被引:1
作者
Joshi, Abhilasha [1 ]
Sharma, K. K. [1 ]
机构
[1] Malaviya Natl Inst Technol, Elect & Commun Engn, Jaipur 302017, Rajasthan, India
关键词
Vision transformer; Medical image segmentation; Attention network; Convolution neural network; Shift-invariant feature;
D O I
10.1007/s11042-023-16252-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, DDTraMIS architecture based on vision has been designed for medical image segmentation for different medical imaging such as MRI and CT-scan. This methodology contributes novel hybrid features extracted with a bi-directional attention-based transformer encoder-decoder network along with all stage features fused with an approximation fusing algorithm. The novelty is to combine Convolution neural networks (CNNs) and shift-invariant methods to develop hybrid features. For the verification of this novel network experiment, three different datasets, such as the ACDC, LiTS, and BraTS datasets have been used. Performance analysis has been conducted using the dice similarity coefficient (DSC) and the Hausdorff distance (HD) metrics. The proposed architecture accomplished DSC values of 92.80, 96.45, 72.80, and 73.12 for ACDC, LiTS Liver, LiTS tumor, and BraTS tumor segmentation analysis, respectively. Similarly, HD metric numeric values are 8.53, 12.84, 9.69, and 10.38 for ACDC, LiTS Liver, LiTS tumor, and BraTS tumor segmentation analysis, respectively. With advantageous performance for highly features incorporated, this method learned from tiny to extensive scaling information. Comparative and quantitative analysis has proven its superior performance and effective segmenting architecture.
引用
收藏
页码:18073 / 18089
页数:17
相关论文
共 37 条
[1]   Bi-Directional ConvLSTM U-Net with Densley Connected Convolutions [J].
Azad, Reza ;
Asadi-Aghbolaghi, Maryam ;
Fathy, Mahmood ;
Escalera, Sergio .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :406-415
[2]  
Bakas S., 2018, ARXIV
[3]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[4]   FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM [J].
BEZDEK, JC ;
EHRLICH, R ;
FULL, W .
COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) :191-203
[5]  
Bilic Patrick, 2019, Med Image Anal
[6]  
Chen J., 2021, CoRR
[7]  
Dosovitskiy A., 2021, 9 INT C LEARN REPR I
[8]  
Gao Y., 2022, arXiv
[9]   CE-Net: Context Encoder Network for 2D Medical Image Segmentation [J].
Gu, Zaiwang ;
Cheng, Jun ;
Fu, Huazhu ;
Zhou, Kang ;
Hao, Huaying ;
Zhao, Yitian ;
Zhang, Tianyang ;
Gao, Shenghua ;
Liu, Jiang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (10) :2281-2292
[10]   UNETR: Transformers for 3D Medical Image Segmentation [J].
Hatamizadeh, Ali ;
Tang, Yucheng ;
Nath, Vishwesh ;
Yang, Dong ;
Myronenko, Andriy ;
Landman, Bennett ;
Roth, Holger R. ;
Xu, Daguang .
2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, :1748-1758