Single Photon Emitters with Polarization and Orbital Angular Momentum Locking in Monolayer Semiconductors

被引:3
作者
Zhang, Di [1 ,2 ]
Zhai, Dawei [3 ,4 ]
Deng, Sha [1 ,2 ]
Yao, Wang [3 ,4 ]
Zhu, Qizhong [1 ,2 ]
机构
[1] South China Normal Univ, Sch Phys & Telecommun Engn, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Frontier Res Inst Phys, Guangdong Hong Kong Joint Lab Quantum Matter, Guangzhou 510006, Guangdong, Peoples R China
[3] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
[4] HKU UCAS Joint Inst Theoret & Computat Phys Hong K, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
single photon emitter; intralayer exciton; transition metal dichalcogenide; strain trap; QUANTUM ENTANGLEMENT; EXCITONS; WSE2; SPIN;
D O I
10.1021/acs.nanolett.3c00459
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Excitons in monolayer transition metal dichalcoge-nide are endowed with intrinsic valley-orbit coupling between their center-of-mass motion and valley pseudospin. When trapped in a confinement potential, e.g., generated by strain field, we find that intralayer excitons are valley and orbital angular momentum (OAM) entangled. By tuning the trap profile and external magnetic field, one can engineer the exciton states at the ground state and realize a series of valley-OAM entangled states. We further show that the OAM of excitons can be transferred to emitted photons, and these novel exciton states can naturally serve as polarization-OAM locked single photon emitters, which under certain circumstance become polarization-OAM entangled, highly tunable by strain trap and magnetic field. Our proposal demonstrates a novel scheme to generate polarization-OAM locked/entangled photons at the nanoscale with a high degree of integrability and tunability, pointing to exciting opportunities for quantum information applications.
引用
收藏
页码:3851 / 3857
页数:7
相关论文
共 55 条
  • [1] Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
  • [2] Magnetic control of valley pseudospin in monolayer WSe2
    Aivazian, G.
    Gong, Zhirui
    Jones, Aaron M.
    Chu, Rui-Lin
    Yan, J.
    Mandrus, D. G.
    Zhang, Chuanwei
    Cobden, David
    Yao, Wang
    Xu, X.
    [J]. NATURE PHYSICS, 2015, 11 (02) : 148 - 152
  • [3] Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview
    Arakawa, Yasuhiko
    Holmes, Mark J.
    [J]. APPLIED PHYSICS REVIEWS, 2020, 7 (02)
  • [4] Highly energy-tunable quantum light from moire-trapped excitons
    Baek, H.
    Brotons-Gisbert, M.
    Koong, Z. X.
    Campbell, A.
    Rambach, M.
    Watanabe, K.
    Taniguchi, T.
    Gerardot, B. D.
    [J]. SCIENCE ADVANCES, 2020, 6 (37):
  • [5] Excitons in strain-induced one-dimensional moire potentials at transition metal dichalcogenide heterojunctions
    Bai, Yusong
    Zhou, Lin
    Wang, Jue
    Wu, Wenjing
    McGilly, Leo J.
    Halbertal, Dorri
    Lo, Chiu Fan Bowen
    Liu, Fang
    Ardelean, Jenny
    Rivera, Pasqual
    Finney, Nathan R.
    Yang, Xu-Chen
    Basov, D. N.
    Yao, Wang
    Xu, Xiaodong
    Hone, James
    Pasupathy, Abhay N.
    Zhu, X-Y
    [J]. NATURE MATERIALS, 2020, 19 (10) : 1068 - +
  • [6] Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings
    Bomzon, Z
    Biener, G
    Kleiner, V
    Hasman, E
    [J]. OPTICS LETTERS, 2002, 27 (05) : 285 - 287
  • [7] Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor
    Branny, Artur
    Kumar, Santosh
    Proux, Raphael
    Gerardot, Brian D.
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [8] Engineered quantum dot single-photon sources
    Buckley, Sonia
    Rivoire, Kelley
    Vuckovic, Jelena
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (12)
  • [9] Integrated Compact Optical Vortex Beam Emitters
    Cai, Xinlun
    Wang, Jianwei
    Strain, Michael J.
    Johnson-Morris, Benjamin
    Zhu, Jiangbo
    Sorel, Marc
    O'Brien, Jeremy L.
    Thompson, Mark G.
    Yu, Siyuan
    [J]. SCIENCE, 2012, 338 (6105) : 363 - 366
  • [10] Chakraborty C, 2015, NAT NANOTECHNOL, V10, P507, DOI [10.1038/NNANO.2015.79, 10.1038/nnano.2015.79]