History and temperature dependent cyclic crystal plasticity model with material-invariant parameters

被引:13
作者
Ashraf, Farhan [1 ]
Castelluccio, Gustavo M. [1 ]
机构
[1] Cranfield Univ, Sch Aerosp Transport & Mfg, Cranfield MK43 0AL, Beds, England
基金
英国工程与自然科学研究理事会;
关键词
Cyclic deformation; FCC metallic materials; Mesoscale dislocation substructures; Single crystal; ALUMINUM SINGLE-CRYSTALS; STRESS-STRAIN RESPONSE; PERSISTENT SLIP BANDS; MEAN FREE PATHS; DISLOCATION-STRUCTURES; DEFORMATION-BEHAVIOR; MECHANICAL-BEHAVIOR; POLYCRYSTAL PLASTICITY; FATIGUE LIFE; FLOW-STRESS;
D O I
10.1016/j.ijplas.2022.103494
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Cyclic deformation of metallic materials depends on the interaction of multiple mechanisms across different length scales. Solid solution atoms, vacancies, grain boundaries, and forest dislocations interfere with dislocation glide and increase the macroscopic strength. In single phase metallic materials under cyclic loading, the localization of dislocation densities in sessile substructures explains a significant fraction of the strain hardening. Upon cycling, these dislocation structures evolve across stable configurations, which depend on the strain accumulation. This work advances substructure-sensitive crystal plasticity models capable of quantifying the cyclic hardening history at various temperatures for single phase FCC materials. The framework predicts the cyclic evolution of dislocation substructure based on the activation of cross slip activation for Al, Cu, and Ni single- and poly-crystals up to 0.5 homologous temperature. The increase in cross slip with temperature and deformation induces a transformation in dislocation structures, which predicts secondary hardening without any additional provision. Moreover, the approach relies on material-invariant mesoscale parameters that are specific to dislocation substructures rather than a material system. Hence, we demonstrate that crystal plasticity predictive power can be augmented by parameterizing the model with single crystal experimental data from multiple materials with common substructures. As a result, the crystal plasticity model shares parameter information across materials without the need for additional single crystal experimental data for calibration.
引用
收藏
页数:21
相关论文
共 105 条
[1]  
ABAQUS, 2017, FEM SOFTW V2017
[2]   THE BAUSCHINGER EFFECT IN CYCLIC PLASTICITY OF PURE ALUMINUM SINGLE-CRYSTALS [J].
ALHAMANY, A ;
CHICOIS, J ;
FOUGERES, R ;
HAMEL, A .
JOURNAL DE PHYSIQUE III, 1992, 2 (08) :1491-1508
[3]   Flow stress/strain rate/grain size coupling for fcc nanopolycrystals [J].
Armstrong, R. W. ;
Rodriguez, P. .
PHILOSOPHICAL MAGAZINE, 2006, 86 (36) :5787-5796
[4]   Analytical fatigue life formulation for notches informed by crystal plasticity [J].
Ashraf, Farhan ;
Cini, Andrea ;
Castelluccio, Gustavo M. .
INTERNATIONAL JOURNAL OF FATIGUE, 2022, 163
[5]   On the similitude relation for dislocation wall thickness under cyclic deformation [J].
Ashraf, Farhan ;
Castelluccio, Gustavo M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 840
[6]   A robust approach to parameterize dislocation glide energy barriers in FCC metals and alloys [J].
Ashraf, Farhan ;
Castelluccio, Gustavo M. .
JOURNAL OF MATERIALS SCIENCE, 2021, 56 (29) :16491-16509
[7]   TEMPERATURE-DEPENDENCE OF THE SATURATION STRESS AND DISLOCATION SUBSTRUCTURE IN FATIGUED COPPER SINGLE-CRYSTALS [J].
BASINSKI, ZS ;
KORBEL, AS ;
BASINSKI, SJ .
ACTA METALLURGICA, 1980, 28 (02) :191-207
[8]   Effect of grain refinement by ECAP on creep of pure Cu [J].
Blum, W. ;
Dvorak, J. ;
Kral, P. ;
Eisenlohr, P. ;
Sklenicka, V. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 590 :423-432
[9]   PSB OBSERVATION IN COPPER FATIGUED AT 1/2 THE MELTING TEMPERATURE [J].
BOEHME, F ;
HIDAKA, K ;
WEERTMAN, JR .
SCRIPTA METALLURGICA ET MATERIALIA, 1990, 24 (12) :2341-2346
[10]  
Bouteau G., 2013, ETUDE MICROSTRUCTURE