Due to its fast training speed and powerful approximation capabilities, the extreme learning machine (ELM) has generated a lot of attention in recent years. However, the basic ELM still has some drawbacks, such as the tendency to over-fitting and the susceptibility to noisy data. By adding a regularization term to the basic ELM, the regularized extreme learning machine (R-ELM) can dramatically improve its generalization and stability. In the R-ELM, choosing an appropriate regularization parameter is critical since it can regulate the fitting and generalization capabilities of the model. In this paper, we propose the regularized functional extreme learning machine (RF-ELM), which employs the regularization functional instead of a preset regularization parameter for adaptively choosing appropriate regularization parameters. The regularization functional is defined according to output weights, and the successive approximation iterative algorithm is utilized to solve the output weights so that we can get their values simultaneously at each iteration step. We also developed a parallel version of RF-ELM (PRF-ELM) to deal with big data tasks. Furthermore, the analysis of convexity and convergence ensures the validity of the model training. Finally, the experiments on the function approximation and the UCI repository with or without noise data demonstrate the superiority and competitiveness of our proposed models.
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Ding, Shifei
;
Zhao, Han
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Zhao, Han
;
Zhang, Yanan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Zhang, Yanan
;
Xu, Xinzheng
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Xu, Xinzheng
;
Nie, Ru
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Chinese Acad Sci, Inst Comp Technol, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Ding, Shifei
;
Zhao, Han
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Zhao, Han
;
Zhang, Yanan
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Zhang, Yanan
;
Xu, Xinzheng
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
Xu, Xinzheng
;
Nie, Ru
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R ChinaChina Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China