Commutators in C*-algebras and traces

被引:0
作者
Bikchentaev, Airat [1 ]
机构
[1] Kazan Fed Univ, 18 Kremlyovskaya Str, Kazan 420008, Russia
关键词
Hilbert space; Linear operator; Commutator; C*-algebra; Trace; VON-NEUMANN ALGEBRA; FINITE SUMS; OPERATORS; PROJECTIONS; PRODUCTS; CONE;
D O I
10.1007/s43034-023-00260-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a Hilbert space, dimH = +infinity. Let X = U |X| be the polar decomposition of an operator X is an element of B(H). Then, X is a non-commutator if and only if both U and |X| are non-commutators. A Hermitian operator X is an element of B(H) is a commutator if and only if the Cayley transform K(X) is a commutator. Let H be a Hilbert space and dim H <= +infinity, A, B, P is an element of B(H) and P = P2. If AB = lambda B A for some lambda is an element of C\{1} then the operator AB is a commutator. The operator AP is a commutator if and only if P A is a commutator.
引用
收藏
页数:14
相关论文
共 34 条
[21]  
Davidson K. R., 1996, C ALGEBRAS EXAMPLE
[22]  
Dixmier J., 1974, ALGEBRAS THEIR REPRE
[23]   THE CONE OF LOWER SEMICONTINUOUS TRACES ON A C*-ALGEBRA [J].
Elliott, George A. ;
Robert, Leonel ;
Santiago, Luis .
AMERICAN JOURNAL OF MATHEMATICS, 2011, 133 (04) :969-1005
[24]   FINITE SUMS OF COMMUTATORS IN C-STAR-ALGEBRAS [J].
FACK, T .
ANNALES DE L INSTITUT FOURIER, 1982, 32 (01) :129-137
[25]  
Glazman I.M., 1974, FINITE DIMENSIONAL L
[26]  
Halmos P.R., 1982, Hilbert Space Problem Book
[27]  
Jafarian A, 2018, INDIANA U MATH J, V67, P151
[28]  
Kadison R. V., 1997, Fundamentals of the theory of operator algebras. Vol. I. Elementary theory, V15
[29]  
Lord S., 2013, De Gruyter Stud. Math.
[30]  
Murphy G. J., 1990, C*-algebras and Operator Theory, DOI DOI 10.1016/C2009-0-22289-6