On Well-Posedness and Concentration of Blow-Up Solutions for the Intercritical Inhomogeneous NLS Equation

被引:6
作者
Cardoso, Mykael [1 ,2 ]
Farah, Luiz Gustavo [1 ]
Guzman, Carlos M. [3 ]
机构
[1] Univ Fed Minas Gerais, Dept Math, Belo Horizonte, MG, Brazil
[2] Univ Fed Piaui, Dept Math, Teresina, Brazil
[3] Univ Fed Fluminense, Dept Math, Niteroi, RJ, Brazil
关键词
Intercritical INLS equation; Well-posedness; Concentration of blow-up solutions; NONLINEAR SCHRODINGER-EQUATION; SCATTERING; STABILITY;
D O I
10.1007/s10884-021-10045-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the focusing inhomogeneous nonlinear Schrodinger (INLS) equation in R-N i partial derivative(t)u + Delta u + vertical bar x vertical bar(-b)vertical bar u vertical bar(2 sigma) u = 0, where N >= 2 and sigma, b > 0. We first obtain a small data global result in H-1, which, in the two spatial dimensional case, improves the third author result in [22] on the range of b. For N >= 3 and 2-b/N < sigma < 2-b/N-2, we also study the local well posedness in (H)over dot(sc) boolean AND (H)over dot(1), where s(c) = N/2 - 2-b/2 sigma. Sufficient conditions for global existence of solutions in (H)over dot(sc) boolean AND (H)over dot(1) are also established, using a Gagliardo-Nirenberg type estimate. Finally, we study the L-sigma c-norm concentration phenomenon, where sigma(c) = 2N sigma/2-b, for finite time blow-up solutions in (H)over dot(sc) boolean AND (H)over dot(1) with bounded (H)over dot(sc)-norm. Our approach is based on the compact embedding of (H)over dot(sc) boolean AND (H)over dot(1) into a weighted L2 sigma+2 space.
引用
收藏
页码:1337 / 1367
页数:31
相关论文
共 37 条
[1]  
[Anonymous], 1999, AM MATH SOC COLLOQ P, DOI DOI 10.1090/COLL/046
[2]  
Bergh J., 1976, Interpolation spaces. An introduction
[3]   Scattering of radial solutions to the inhomogeneous nonlinear Schrodinger equation [J].
Campos, Luccas .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 202
[4]  
Cardoso M., 2018, ARXIV PREPRINT ARXIV
[5]  
Cazenave T., 2003, Semilinear Schrodinger Equations, V10
[6]   ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRODINGER EQUATIONS WITH SINGULAR POTENTIAL [J].
Cho, Yonggeun ;
Lee, Misung .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (06) :1601-1615
[7]  
Combet V, 2016, J EVOL EQU, V16, P483, DOI 10.1007/s00028-015-0309-z
[8]  
Demengel F, 2012, UNIVERSITEXT, P371, DOI 10.1007/978-1-4471-2807-6_7
[9]  
Dinh V.D., 2017, ARXIV PREPRINT ARXIV
[10]   Nonlinear Profile Decomposition and the Concentration Phenomenon for Supercritical Generalized KdV Equations [J].
Farah, Luiz G. ;
Pigott, Brian .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (05) :1857-1892