The existence of solutions to higher-order differential equations with nonhomogeneous conditions

被引:0
作者
Madhubabu, Boddeti [1 ]
Sreedhar, Namburi [1 ]
Prasad, Kapula Rajendra [2 ]
机构
[1] GITAM, Dept Math, Visakhapatnam 530045, India
[2] Andhra Univ, Dept Appl Math, Visakhapatnam 530003, India
关键词
three-point boundary value problem; kernel; existence; uniqueness; fixed point theorems; BOUNDARY-VALUE-PROBLEMS; POSITIVE SOLUTIONS; SHARPER EXISTENCE; UNIQUE SOLUTION; 4TH-ORDER;
D O I
10.1007/s10986-024-09622-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence and uniqueness of solutions to the differential equations of higher order x((l))(s) + g(s, x(s)) = 0,s is an element of[c, d], satisfying three-point boundary conditions that contain a nonhomogeneous term x(c) = 0,x '(c) = 0,x ''(c) = 0,...,x((l-2))(c) = 0,x((l-2))(d)-beta x((l-2))(eta)=gamma, where l >= 3,0 <= c < eta < d, the constants beta,gamma are real numbers, and g:[c, d]xR -> R is a continuous function. By using finer bounds on the integral of kernel, the Banach and Rus fixed point theorems on metric spaces are utilized to prove the existence and uniqueness of a solution to the problem.
引用
收藏
页码:80 / 100
页数:21
相关论文
共 26 条
  • [1] Agarwall RP., 1982, J COMPUT APPL MATH, V8, P145, DOI DOI 10.1016/0771-050X(82)90035-3
  • [2] ALMUTHAYBIRI S. S., 2021, Trends Comput. Appl. Math., V22, P221, DOI 10.5540/tcam.2021.022.02.00221
  • [3] EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THIRD-ORDER BOUNDARY VALUE PROBLEMS: ANALYSIS IN CLOSED AND BOUNDED SETS
    Almuthaybiri, Saleh S.
    Tisdell, Christopher C.
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2020, 12 (03): : 291 - 312
  • [4] Sharper existence and uniqueness results for solutions to fourth-order boundary value problems and elastic beam analysis
    Almuthaybiri, Saleh S.
    Tisdell, Christopher C.
    [J]. OPEN MATHEMATICS, 2020, 18 : 1006 - 1024
  • [5] Sharper Existence and Uniqueness Results for Solutions to Third-Order Boundary Value Problems
    Almuthaybiri, Saleh S.
    Tisdell, Christopher C.
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2020, 25 (03) : 409 - 420
  • [6] [Anonymous], 1977, Studia Univ. Babes-Bolyai Math
  • [7] Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
  • [8] Analytical investigation of a fourth-order boundary value problem in deformation of beams and plate deflection theory
    Choobbasti, A.J.
    Barari, A.
    Farrokhzad, F.
    Ganji, D.D.
    [J]. Journal of Applied Sciences, 2008, 8 (11) : 2148 - 2152
  • [9] ELCRAT AR, 1976, ARCH RATION MECH AN, V61, P91, DOI 10.1007/BF00251865
  • [10] A unique solution to a fourth-order three-point boundary value problem
    Erturk, Vedat Suat
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (05) : 1941 - 1949