Understanding a novel form of intergranular corrosion of stainless steel 316L exposed to molten LiCl-Li2O-Li

被引:1
作者
Moon, Jeremy T. [1 ]
Phillips, William [3 ]
Chuirazzi, William [3 ]
Kane, Joshua [3 ]
Chidambaram, Dev [1 ,2 ,4 ]
机构
[1] Univ Nevada, Dept Chem & Mat Engn, 1664 N Virginia St, Reno, NV 89557 USA
[2] Univ Nevada, Nevada Inst Sustainabil, 1664 N Virginia St, Reno, NV 89557 USA
[3] Idaho Natl Lab, 1955 N Freemont Ave, Idaho Falls, ID 83415 USA
[4] 1664 N Virginia St MS0388, Reno, NV 89557 USA
基金
美国能源部;
关键词
Molten salts (A); Stainless steel (A); SEM (B); De-alloying (C); High temperature corrosion (C); Intergranular corrosion (C); ELECTROCHEMICAL REDUCTION; METALLIC LITHIUM; ELECTRODEPOSITION; PRECIPITATION; SALTS; LI;
D O I
10.1016/j.corsci.2024.111836
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stainless steel 316 L exposed to LiCl-Li2O molten salt containing Li metal for 500 and 1000 h experiences deep intergranular attack and bulk void formation. This degradation is due to a synergistic corrosion mechanism, different than other forms of molten salt corrosion, where Cr and Mn oxides and carbides form along grain boundaries and are dissolved by Li metal. Synchrotron transmission X-ray microscopy 3D imaging is used to show corrosion morphology and Cr enrichment and depletion in a novel format that has not previously been used for bulk corrosion samples.
引用
收藏
页数:10
相关论文
共 34 条
  • [11] Haarberg G.M., 2014, Encyclopedia of Applied Electrochemistry, P21
  • [12] Haarberg GM, 2002, ELEC SOC S, V2002, P789
  • [13] Effect of misorientation angle and chromium concentration on grain boundary sensitisation in an austenitic stainless steel
    Jiang, S.
    Hewett, J.
    Jones, I. P.
    Connolly, B. J.
    Chiu, Y. L.
    [J]. MATERIALS CHARACTERIZATION, 2020, 164
  • [14] Liquid Metal Batteries: Past, Present, and Future
    Kim, Hojong
    Boysen, Dane A.
    Newhouse, Jocelyn M.
    Spatocco, Brian L.
    Chung, Brice
    Burke, Paul J.
    Bradwell, David J.
    Jiang, Kai
    Tomaszowska, Alina A.
    Wang, Kangli
    Wei, Weifeng
    Ortiz, Luis A.
    Barriga, Salvador A.
    Poizeau, Sophie M.
    Sadoway, Donald R.
    [J]. CHEMICAL REVIEWS, 2013, 113 (03) : 2075 - 2099
  • [15] Chromium carbide coating of diamond particles using low temperature molten salt mixture
    Kim, Hwa-Jung
    Choi, Hee-Lack
    Ahn, Yong-Sik
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 805 : 648 - 653
  • [16] Grain-boundary structure and precipitation in sensitized austenitic stainless steel
    Kokawa, H
    Shimada, M
    Sato, YS
    [J]. JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2000, 52 (07): : 34 - 37
  • [17] MEASUREMENT OF THE ACTIVITY OF LITHIUM IN DILUTE-SOLUTIONS IN MOLTEN LITHIUM-CHLORIDE BETWEEN 650-DEGREES-C AND 800-DEGREES-C
    LIU, J
    POIGNET, JC
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1990, 20 (05) : 864 - 867
  • [18] ELECTRONIC CONDUCTIVITY OF SALT-RICH LI-LICL MELTS
    LIU, J
    POIGNET, JC
    [J]. JOURNAL OF APPLIED ELECTROCHEMISTRY, 1992, 22 (11) : 1110 - 1112
  • [19] Formation of three-dimensional bicontinuous structures via molten salt dealloying studied in real-time by in situ synchrotron X-ray nano-tomography
    Liu, Xiaoyang
    Ronne, Arthur
    Yu, Lin-Chieh
    Liu, Yang
    Ge, Mingyuan
    Lin, Cheng-Hung
    Layne, Bobby
    Halstenberg, Phillip
    Maltsev, Dmitry S.
    Ivanov, Alexander S.
    Antonelli, Stephen
    Dai, Sheng
    Lee, Wah-Keat
    Mahurin, Shannon M.
    Frenkel, Anatoly I.
    Wishart, James F.
    Xiao, Xianghui
    Chen-Wiegart, Yu-chen Karen
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [20] Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage
    Lu, Xiaochuan
    Li, Guosheng
    Kim, Jin Y.
    Mei, Donghai
    Lemmon, John P.
    Sprenkle, Vincent L.
    Liu, Jun
    [J]. NATURE COMMUNICATIONS, 2014, 5