Understanding a novel form of intergranular corrosion of stainless steel 316L exposed to molten LiCl-Li2O-Li

被引:1
作者
Moon, Jeremy T. [1 ]
Phillips, William [3 ]
Chuirazzi, William [3 ]
Kane, Joshua [3 ]
Chidambaram, Dev [1 ,2 ,4 ]
机构
[1] Univ Nevada, Dept Chem & Mat Engn, 1664 N Virginia St, Reno, NV 89557 USA
[2] Univ Nevada, Nevada Inst Sustainabil, 1664 N Virginia St, Reno, NV 89557 USA
[3] Idaho Natl Lab, 1955 N Freemont Ave, Idaho Falls, ID 83415 USA
[4] 1664 N Virginia St MS0388, Reno, NV 89557 USA
基金
美国能源部;
关键词
Molten salts (A); Stainless steel (A); SEM (B); De-alloying (C); High temperature corrosion (C); Intergranular corrosion (C); ELECTROCHEMICAL REDUCTION; METALLIC LITHIUM; ELECTRODEPOSITION; PRECIPITATION; SALTS; LI;
D O I
10.1016/j.corsci.2024.111836
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Stainless steel 316 L exposed to LiCl-Li2O molten salt containing Li metal for 500 and 1000 h experiences deep intergranular attack and bulk void formation. This degradation is due to a synergistic corrosion mechanism, different than other forms of molten salt corrosion, where Cr and Mn oxides and carbides form along grain boundaries and are dissolved by Li metal. Synchrotron transmission X-ray microscopy 3D imaging is used to show corrosion morphology and Cr enrichment and depletion in a novel format that has not previously been used for bulk corrosion samples.
引用
收藏
页数:10
相关论文
共 34 条
  • [1] Visualizing time-dependent microstructural and chemical evolution during molten salt corrosion of Ni-20Cr model alloy using correlative quasi in situ TEM and in situ synchrotron X-ray nano-tomography
    Bawane, Kaustubh
    Liu, Xiaoyang
    Gakhar, Ruchi
    Woods, Michael
    Ge, Mingyuan
    Xiao, Xianghui
    Lee, Wah-Keat
    Halstenberg, Philip
    Dai, Sheng
    Mahurin, Shannon
    Pimblott, Simon M.
    Wishart, James F.
    Chen-Wiegart, Yu-chen Karen
    He, Lingfeng
    [J]. CORROSION SCIENCE, 2022, 195
  • [2] Measurement of Solubility of Metallic Lithium Dissolved in Molten LiCl-Li2O
    Burak, Adam J.
    Simpson, Michael F.
    [J]. JOM, 2016, 68 (10) : 2639 - 2645
  • [3] Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride
    Chen, GZ
    Fray, DJ
    Farthing, TW
    [J]. NATURE, 2000, 407 (6802) : 361 - 364
  • [4] Sample Preparation of Energy Materials for X-ray Nanotomography with Micromanipulation
    Chen-Wiegart, Yu-chen Karen
    Camino, Fernando E.
    Wang, Jun
    [J]. CHEMPHYSCHEM, 2014, 15 (08) : 1587 - 1591
  • [5] Electrochemical processing of spent nuclear fuels: An overview of oxide reduction in pyroprocessing technology
    Choi, Eun-Young
    Jeong, Sang Mun
    [J]. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2015, 25 (06) : 572 - 582
  • [6] MISCIBILITY OF METALS WITH SALTS .6. LITHIUM-LITHIUM HALIDE SYSTEMS
    DWORKIN, AS
    BREDIG, MA
    BRONSTEIN, HR
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1962, 66 (03) : 572 - &
  • [7] A way to limit the corrosion in the Molten Salt Reactor concept: the salt redox potential control
    Gibilaro, M.
    Massot, L.
    Chamelot, P.
    [J]. ELECTROCHIMICA ACTA, 2015, 160 : 209 - 213
  • [8] Gourishankar K, 2002, LIGHT MET, P1075
  • [9] Low-Temperature Molten Sodium Batteries
    Gross, Martha M.
    Percival, Stephen J.
    Small, Leo J.
    Lamb, Joshua
    Peretti, Amanda S.
    Spoerke, Erik D.
    [J]. ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) : 11456 - 11462
  • [10] TomoPy: a framework for the analysis of synchrotron tomographic data
    Guersoy, Doga
    De Carlo, Francesco
    Xiao, Xianghui
    Jacobsen, Chris
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2014, 21 : 1188 - 1193