Second cohomology group and quadratic extensions of metric Hom-Jacobi-Jordan algebras

被引:0
作者
Saadaoui, Nejib [1 ]
机构
[1] Univ Gabes, Higher Inst Comp Sci & Multimedia Gabes, City Elamal 4, Gabes, Tunisia
来源
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA | 2023年 / 27卷 / 02期
关键词
Metric-Hom-Jacobi-Jordan algebra; cohomology; quadratic ex-tension; twofold extension; LIE-ALGEBRAS; DEFORMATIONS;
D O I
10.12697/ACUTM.2023.27.19
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study the low dimensional cohomology of metric Hom-Jacobi-Jordan algebras. We establish one-to-one correspondence between the equivalence classes of abelian quadratic extensions of a Hom-Jacobi-Jordan algebra and its second cohomology group.
引用
收藏
页码:269 / 294
页数:26
相关论文
共 20 条
[1]   On a type of commutative algebras [J].
Agore, A. L. ;
Militaru, G. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 485 :222-249
[2]  
Ammar F, 2011, J LIE THEORY, V21, P813
[3]   Hom-Lie algebras with symmetric invariant nondegenerate bilinear forms [J].
Benayadi, Said ;
Makhlouf, Abdenacer .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 :38-60
[4]   Jacobi-Jordan algebras [J].
Burde, Dietrich ;
Fialowski, Alice .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 459 :586-594
[5]  
Casas JM, 2015, HACET J MATH STAT, V44, P277
[6]  
Haliya C.E., 2021, Quasigroups and Related Systems, V29, P61
[7]   Deformations of Lie algebras using σ-derivations [J].
Hartwig, JT ;
Larsson, D ;
Silvestrov, SD .
JOURNAL OF ALGEBRA, 2006, 295 (02) :314-361
[8]   Hom-Lie algebra structures on semi-simple Lie algebras [J].
Jin, Quanqin ;
Li, Xiaochao .
JOURNAL OF ALGEBRA, 2008, 319 (04) :1398-1408
[9]   On an algebraic generalization of the quantum mechanical formalism [J].
Jordan, P ;
Von Neumann, J ;
Wigner, E .
ANNALS OF MATHEMATICS, 1934, 35 :29-64
[10]   Metric Lie algebras and quadratic extensions [J].
Kath, I ;
Olbrich, V .
TRANSFORMATION GROUPS, 2006, 11 (01) :87-131