CONVERGENCE OF DZIUK'S SEMIDISCRETE FINITE ELEMENT METHOD FOR MEAN CURVATURE FLOW OF CLOSED SURFACES WITH HIGH-ORDER FINITE ELEMENTS (vol 59, pg 1592, 2021)

被引:5
作者
Bai, Genming [1 ]
Li, Buyang [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
关键词
mean curvature flow; evolving surface; finite element method; convergence; error estimate;
D O I
10.1137/22M1521791
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The proof of the main theorem in [B. Li, SIAM J. Numer. Anal., 59 (2021), pp. 1592-1617] is corrected. With the corrected proof, the main theorem in this published paper is still valid.
引用
收藏
页码:1609 / 1612
页数:4
相关论文
共 4 条
[1]   Finite element methods for surface PDEs [J].
Dziuk, Gerhard ;
Elliott, Charles M. .
ACTA NUMERICA, 2013, 22 :289-396
[2]   Scalar conservation laws on moving hypersurfaces [J].
Dziuk, Gerhard ;
Kroener, Dietmar ;
Mueller, Thomas .
INTERFACES AND FREE BOUNDARIES, 2013, 15 (02) :203-236
[3]   CONVERGENCE OF DZIUK'S SEMIDISCRETE FINITE ELEMENT METHOD FOR MEAN CURVATURE FLOW OF CLOSED SURFACES WITH HIGH-ORDER FINITE ELEMENTS [J].
Li, Buyang .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) :1592-1617
[4]  
Mantegazza C., 2011, Lecture Notes on Mean Curvature Flow, Volume 290 of Progress in Mathematics