Generation of collimated extreme ultraviolet radiation by single-photon process

被引:3
作者
Hong, Daobiao [1 ,2 ]
Xiang, Bingke [3 ,4 ]
Wu, Tong [3 ,4 ]
Liu, Zhonghao [1 ,2 ]
Tao, Zhensheng [3 ,4 ]
Wang, Yihua [3 ,4 ,5 ]
Qiao, Shan [1 ,2 ,6 ]
机构
[1] Chinese Acad Sci, Ctr Excellence Superconducting Elect, State Key Lab Funct Mat Informat, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Fudan Univ, State Key Lab Surface Phys, Shanghai 200438, Peoples R China
[4] Fudan Univ, Dept Phys, Shanghai 200438, Peoples R China
[5] Shanghai Res Ctr Quantum Sci, Shanghai 201315, Peoples R China
[6] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Collimated extreme ultraviolet radiation; Single-photon process; Anti-Stokes Raman scattering; Photoelectron spectroscopy; LITHOGRAPHY; EMISSION; SPECTRA; LIGHT;
D O I
10.1016/j.optcom.2023.129626
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Generating laser with short wavelength is a bottleneck problem in laser technology. The current applicable table-top extreme ultraviolet (EUV) lasers are all generated by multi-photon process with low efficiency. By utilizing metastable helium atoms excited by microwave and irradiated by a resonant laser, here we report the development of 58.4 nm collimated radiation by single-photon-excitation related anti-Stokes Raman scattering (ASRS). The conversion efficiency is much higher than that of high harmonic generation (HHG). The same divergence of 1.4 mrad as that of excitation laser indicates its stimulating character. Our results show an applicable path towards up-conversion by single-photon process to generate table-top EUV lasers.
引用
收藏
页数:5
相关论文
共 40 条
[1]  
[Anonymous], 2017, About us, DOI DOI 10.1021/ACS.JPCC.8B09203
[2]   Coherent population transfer among quantum states of atoms and molecules [J].
Bergmann, K ;
Theuer, H ;
Shore, BW .
REVIEWS OF MODERN PHYSICS, 1998, 70 (03) :1003-1025
[3]   An experimental setup for high resolution 10.5 eV laser-based angle-resolved photoelectron spectroscopy using a time-of-flight electron analyzer [J].
Berntsen, M. H. ;
Gotberg, O. ;
Tjernberg, O. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2011, 82 (09)
[4]   A setup for extreme-ultraviolet ultrafast angle-resolved photoelectron spectroscopy at 50-kHz repetition rate [J].
Buss, Jan Heye ;
Wang, He ;
Xu, Yiming ;
Maklar, Julian ;
Joucken, Frederic ;
Zeng, Lingkun ;
Stoll, Sebastian ;
Jozwiak, Chris ;
Pepper, John ;
Chuang, Yi-De ;
Denlinger, Jonathan D. ;
Hussain, Zahid ;
Lanzara, Alessandra ;
Kaindl, Robert A. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2019, 90 (02)
[5]   Experimental study on laser produced tin droplet plasma extreme ultraviolet light source [J].
Chen Hong ;
Lan Hui ;
Chen Zi-Qi ;
Liu Lu-Ning ;
Wu Tao ;
Zuo Du-Luo ;
Lu Pei-Xiang ;
Wang Xin-Bing .
ACTA PHYSICA SINICA, 2015, 64 (07)
[6]   STIMULATED RAMAN-SCATTERING AT 53.7 NM IN A SINGLET METASTABLE HE BEAM [J].
CHENG, BY ;
FRANCESCONI, M ;
GIAMMANCO, F ;
STRUMIA, F ;
TOMMASI, O ;
TOSETTI, M .
OPTICS COMMUNICATIONS, 1993, 97 (3-4) :183-188
[7]   Angle-resolved photoemission studies of the cuprate superconductors [J].
Damascelli, A ;
Hussain, Z ;
Shen, ZX .
REVIEWS OF MODERN PHYSICS, 2003, 75 (02) :473-541
[8]  
Elton Raymond C., 1990, XRAY LASERS, VFirst, P19
[9]   KNIFE-EDGE SCANNING MEASUREMENTS OF SUBWAVELENGTH FOCUSED LIGHT-BEAMS [J].
FIRESTER, AH ;
HELLER, ME ;
SHENG, P .
APPLIED OPTICS, 1977, 16 (07) :1971-1974
[10]  
Fomenkov I, 2017, ADV OPT TECHNOL, V6, P173, DOI 10.1515/aot-2017-0029