On Singular Control for Levy Processes

被引:4
|
作者
Noba, Kei [1 ]
Yamazaki, Kazutoshi [2 ]
机构
[1] Inst Stat Math, Sch Stat Thinking, Tokyo 1908562, Japan
[2] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
日本学术振兴会;
关键词
stochastic control; mathematical finance; Levy processes; STOCHASTIC-CONTROL; DIFFUSION DEMANDS; OPTIMAL DIVIDENDS; COMPOUND POISSON; SMOOTH FIT; OPTIMALITY; CONNECTIONS; STRATEGIES; POLICY;
D O I
10.1287/moor.2022.1298
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We revisit the classical singular control problem of minimizing running and controlling costs. Existing studies have shown the optimality of a barrier strategy when driven by Brownian motion or Levy processes with one-sided jumps. Under the assumption that the running cost function is convex, we show the optimality of a barrier strategy for a general class of Levy processes.
引用
收藏
页码:1213 / 1234
页数:22
相关论文
共 50 条
  • [31] Mortality modelling with Levy processes
    Hainaut, Donatien
    Devolder, Pierre
    INSURANCE MATHEMATICS & ECONOMICS, 2008, 42 (01) : 409 - 418
  • [32] MULTIPLICATIVE FUNCTIONALS OF LEVY PROCESSES
    YING, JG
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1995, 58 (02) : 319 - 327
  • [33] Comparison of semimartingales and Levy processes
    Bergenthum, Jan
    Ruedschendorf, Ludger
    ANNALS OF PROBABILITY, 2007, 35 (01) : 228 - 254
  • [34] Overshoots and undershoots of Levy processes
    Doney, RA
    Kyprianou, AE
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (01) : 91 - 106
  • [35] On the coupling property of Levy processes
    Schilling, Rene L.
    Wang, Jian
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04): : 1147 - 1159
  • [36] On a maximum of stable Levy processes
    Molchan, GM
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2000, 45 (02) : 343 - 349
  • [37] Skewness premium with Levy processes
    Fajardo, Jose
    Mordecki, Ernesto
    QUANTITATIVE FINANCE, 2014, 14 (09) : 1619 - 1626
  • [38] Stability in Probability and Inverse Optimal Control of Evolution Systems Driven by Levy Processes
    Khac Duc Do
    IEEE/CAA Journal of Automatica Sinica, 2020, 7 (02) : 405 - 419
  • [39] Stable Levy processes in a cone
    Kyprianou, Andreas E.
    Rivero, Victor
    Satitkanitkul, Weerapat
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2066 - 2099
  • [40] Bandit Problems with Levy Processes
    Cohen, Asaf
    Solan, Eilon
    MATHEMATICS OF OPERATIONS RESEARCH, 2013, 38 (01) : 92 - 107