On Singular Control for Levy Processes

被引:4
|
作者
Noba, Kei [1 ]
Yamazaki, Kazutoshi [2 ]
机构
[1] Inst Stat Math, Sch Stat Thinking, Tokyo 1908562, Japan
[2] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
日本学术振兴会;
关键词
stochastic control; mathematical finance; Levy processes; STOCHASTIC-CONTROL; DIFFUSION DEMANDS; OPTIMAL DIVIDENDS; COMPOUND POISSON; SMOOTH FIT; OPTIMALITY; CONNECTIONS; STRATEGIES; POLICY;
D O I
10.1287/moor.2022.1298
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We revisit the classical singular control problem of minimizing running and controlling costs. Existing studies have shown the optimality of a barrier strategy when driven by Brownian motion or Levy processes with one-sided jumps. Under the assumption that the running cost function is convex, we show the optimality of a barrier strategy for a general class of Levy processes.
引用
收藏
页码:1213 / 1234
页数:22
相关论文
共 50 条