Short-term electrical load forecasting using hybrid model of manta ray foraging optimization and support vector regression

被引:34
|
作者
Li, Siwei [1 ,2 ]
Kong, Xiangyu [1 ]
Yue, Liang [2 ]
Liu, Chang [2 ]
Khan, Muhammad Ahmad [1 ]
Yang, Zhiduan [1 ]
Zhang, Honghui [3 ]
机构
[1] Tianjin Univ, Key Lab Smart Grid, Minist Educ, Tianjin 300072, Peoples R China
[2] Beijing Fibrlink Commun Co Ltd, Beijing 100071, Peoples R China
[3] Zhoukou Normal Univ, Sch Phys & Telecommun Engn, Zhoukou 466001, Peoples R China
关键词
Electricity management; Short-term load forecasting; Support vector machine; Manta ray foraging optimization; Hybrid SVR-MRFO; SVR MODEL; K-FOLD; ALGORITHM; DECOMPOSITION; MACHINES; FILTER;
D O I
10.1016/j.jclepro.2023.135856
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Demand prediction is playing a progressively important role in electricity management, and is fundamental to the corresponding decision-making. Because of the high variability of the increased electrical load, and of the new renewable energy technologies, power systems are facing technical challenges. Thus, short-term forecasting has a crucial utility for generating dispatching commands, managing the spot market, and detecting anomalies. Accordingly, in this work, a hybrid method that optimizes the parameters of a support vector machine using Manta ray foraging optimization is proposed for short-term load forecasting. To evaluate the accuracy of the proposed method, five other optimizers, including the Slime Mould algorithm, Tug of War optimization, Moth Flame optimization, the Satin Bowerbird optimizer, and the Fruit-fly optimization algorithm, are used for evaluation of the proposed method's superiority. By conducting a case study based on actual data, the perfor-mance of all methods is investigated using various statistical indexes. Results show that using the hybridized technique can address the disadvantages and weaknesses of single methods. For example, based on the train and test datasets, the coefficient of determination (R2) values of the proposed SVR-MRFO method for electrical loads are 0.999 and 0.993, respectively.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] A load forecasting model based on support vector regression with whale optimization algorithm
    Lu, Yuting
    Wang, Gaocai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (07) : 9939 - 9959
  • [32] Research on Short-Term Gas Load Forecasting Based on Support Vector Machine Model
    Zhang, Chao
    Liu, Yi
    Zhang, Hui
    Huang, Hong
    Zhu, Wei
    LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT II, 2010, 6329 : 390 - +
  • [33] Short-Term and Midterm Load Forecasting Using a Bilevel Optimization Model
    Mao, Huina
    Zeng, Xiao-Jun
    Leng, Gang
    Zhai, Yong-Jie
    Keane, John A.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2009, 24 (02) : 1080 - 1090
  • [34] Short Term Load Forecasting Model Based on Kernel-Support Vector Regression with Social Spider Optimization Algorithm
    Alireza Sina
    Damanjeet Kaur
    Journal of Electrical Engineering & Technology, 2020, 15 : 393 - 402
  • [35] Forecasting Short-Term Wind Speed Using Support Vector Machine with Particle Swarm Optimization
    Wang, Xiaodan
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 241 - 245
  • [36] Short-term power load forecasting based on support vector machine and particle swarm optimization
    Qiang, Song
    Pu, Yang
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2018, 13 (13) : 1 - 8
  • [37] Short Term Load Forecasting Model Based on Kernel-Support Vector Regression with Social Spider Optimization Algorithm
    Sina, Alireza
    Kaur, Damanjeet
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (01) : 393 - 402
  • [38] Short-Term Load Forecasting Using Ensemble Empirical Mode Decomposition and Harmony Search Optimized Support Vector Regression
    Ye, Jianhua
    Yang, Li
    PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 851 - 855
  • [39] Short-term load forecasting based on distributed support vector machine
    Liu Xiaohua
    Gao Rong
    Proceedings of the 24th Chinese Control Conference, Vols 1 and 2, 2005, : 336 - 339
  • [40] Short Term Load Forecasting with Least Square Support Vector Regression and PSO
    Zou Min
    Tao Huanqi
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL V, 2010, : 79 - 82