Design, calibration, and validation of an inline green coffee moisture estimation system using time-domain reflectometry

被引:2
|
作者
Anokye-Bempah, Laudia [1 ]
Phetpan, Kittisak [2 ]
Slaughter, David [1 ]
Donis-Gonzalez, Irwin R. [3 ]
机构
[1] Univ Calif Davis, Dept Biol & Agr Engn, Davis, CA 95616 USA
[2] King Mongkuts Inst Technol Ladkrabang KMITL, Dept Engn, Prince Chumphon Campus, Chumphon, Thailand
[3] Univ Calif Davis, 3024 Bainer Hall, Davis, CA 95616 USA
关键词
Moisture estimation; Time -domain reflectometry; Calibration; Validation; SOIL-WATER CONTENT; RELATIVE-HUMIDITY; BEAN MOISTURE; OCHRATOXIN-A; TEMPERATURE;
D O I
10.1016/j.jfoodeng.2022.111342
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Wet basis moisture content (MCwb) is an important quality parameter of green coffee as it affects the coffee's physical, chemical, and sensory characteristics. Accurate estimation of green coffee MCwb after dry hulling, longterm storage, and transportation is imperative to prevent quantitative and qualitative losses. Thus, this study aimed to design, develop, calibrate and validate a prototype inline system capable of accurately measuring the MCwb of green coffee beans, using a commercially available time-domain reflectometry (TDR) probe. The TDR probe was calibrated and validated with green coffee within a MCwb range of 9-21%. A calibration linear regression model correlating the TDR probe output (dielectric constant) to reference MCwb measurements obtained by a halogen moisture analyzer, yielded a high coefficient of correlation (R2 = 0.99). Model validation yielded a high R2, and a low Root Mean Squared Error equal to 0.93, and 0.9% MCwb, subsequently. Results indicate that the TDR inline green coffee moisture estimation system has the potential to be applied in real-time, industrial-scale operations.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Using neural networks for calibration of time-domain reflectometry measurements
    Persson, M
    Berndtsson, R
    Sivakumar, B
    HYDROLOGICAL SCIENCES JOURNAL, 2001, 46 (03) : 389 - 398
  • [2] Modeling and Monitoring of Wood Moisture Content Using Time-Domain Reflectometry
    Dahlen, Joseph
    Schimleck, Laurence
    Schilling, Erik
    FORESTS, 2020, 11 (04):
  • [3] Estimation of LNAPL saturation in fine sand using time-domain reflectometry
    Haridy, SA
    Persson, M
    Berndtsson, R
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2004, 49 (06): : 987 - 1000
  • [4] A METHOD OF MEASURING SOIL-MOISTURE BY TIME-DOMAIN REFLECTOMETRY
    LEDIEU, J
    DERIDDER, P
    DECLERCK, P
    DAUTREBANDE, S
    JOURNAL OF HYDROLOGY, 1986, 88 (3-4) : 319 - 328
  • [5] A Design of Probe for Measurement of Moisture Content Using Time Domain Reflectometry
    Wang Cheng
    Zhao Chunjiang
    Qiao Xiaojun
    Hou Ruifeng
    SENSOR LETTERS, 2010, 8 (01) : 118 - 121
  • [6] Effect of Time-Domain Reflectometry probe location on soil moisture measurement during wetting and drying processes
    Pastuszka, Tomasz
    Krzyszczak, Jaromir
    Slawinski, Cezary
    Lamorski, Krzysztof
    MEASUREMENT, 2014, 49 : 182 - 186
  • [7] Time-Domain Reflectometry for the Prediction of Loblolly Pine and Sweetgum Moisture Content
    Dahlen, Joseph
    Antony, Finto
    Li, Anzhi
    Love-Myers, Kim
    Schimleck, Laurence
    Schilling, Erik B.
    BIORESOURCES, 2015, 10 (03): : 4947 - 4960
  • [8] The effect of soil electrical conductivity on moisture determination using time-domain reflectometry in sandy soil
    Sun, ZJ
    Young, GD
    McFarlane, RA
    Chambers, BM
    CANADIAN JOURNAL OF SOIL SCIENCE, 2000, 80 (01) : 13 - 22
  • [9] Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review
    Cerny, Robert
    MEASUREMENT, 2009, 42 (03) : 329 - 336
  • [10] Probe pulse design in Brillouin optical time-domain reflectometry
    Li, Mupeng
    Xu, Tianhua
    Wang, Shuang
    Hu, Wenxiu
    Jiang, Junfeng
    Liu, Tiegen
    IET OPTOELECTRONICS, 2022, 16 (06) : 238 - 252