Proper 3-colorings of Z2 are Bernoulli

被引:4
作者
Ray, Gourab [1 ]
Spinka, Yinon [2 ,3 ]
机构
[1] Univ Victoria, Dept Math, Victoria, BC V8W 2Y2, Canada
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Tel Aviv Univ, Sch Math Sci, IL-6997801 Tel Aviv, Israel
基金
加拿大自然科学与工程研究理事会;
关键词
coloring; Bernoulli; factor of iid; FINITARY CODINGS; AUTOMORPHISMS; INDEPENDENCE; MODEL;
D O I
10.1017/etds.2021.160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the unique measure of maximal entropy for proper 3-colorings of Z(2) , or equivalently, the so-called zero-slope Gibbs measure. Our main result is that this measure is Bernoulli, or equivalently, that it can be expressed as the image of a translation-equivariant function of independent and identically distributed random variables placed on Z(2). Along the way, we obtain various estimates on the mixing properties of this measure.
引用
收藏
页码:2002 / 2027
页数:26
相关论文
共 35 条
  • [1] Rapid mixing for lattice colourings with fewer colours
    Achlioptas, D
    Molloy, M
    Moore, C
    Van Bussel, F
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 217 - 228
  • [2] FOLNER INDEPENDENCE AND THE AMENABLE ISING-MODEL
    ADAMS, S
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1992, 12 : 633 - 657
  • [3] Boyle M, 2008, CONTEMP MATH, V469, P69
  • [4] Chandgotia N, 2021, COMMUN MATH PHYS, V387, P621, DOI 10.1007/s00220-021-04181-0
  • [5] ENTROPY OF ABELIAN GROUP OF TRANSFORMATIONS
    CONZE, JP
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1972, 25 (01): : 11 - 30
  • [6] den Hollander F, 1997, J ANAL MATH, V72, P165
  • [7] On K-automorphisms, Bernoulli shifts and Markov random fields
    DenHollander, F
    Steif, JE
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 : 405 - 415
  • [8] Duminil-Copin, 2022, PREPRINT
  • [9] Duminil-Copin H., 2017, PIMS CRM SUMMER SCH, P161
  • [10] Long-range order in the 3-state antiferromagnetic Potts model in high dimensions
    Feldheim, Ohad N.
    Spinka, Yinon
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (05) : 1509 - 1570