All-analog photoelectronic chip for high-speed vision tasks

被引:140
作者
Chen, Yitong [1 ]
Nazhamaiti, Maimaiti [2 ]
Xu, Han [2 ]
Meng, Yao [3 ]
Zhou, Tiankuang [1 ,3 ,4 ]
Li, Guangpu [1 ,3 ]
Fan, Jingtao [1 ]
Wei, Qi [5 ]
Wu, Jiamin [1 ,3 ,6 ]
Qiao, Fei [2 ]
Fang, Lu [2 ,3 ,6 ]
Dai, Qionghai [1 ,3 ,6 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[3] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
[4] Tsinghua Univ, Shenzhen Int Grad Sch, Shenzhen, Peoples R China
[5] Tsinghua Univ, Dept Precis Instruments, Beijing, Peoples R China
[6] Tsinghua Univ, Inst Brain & Cognit Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
ACCELERATOR;
D O I
10.1038/s41586-023-06558-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photonic computing enables faster and more energy-efficient processing of vision data(1-5). However, experimental superiority of deployable systems remains a challenge because of complicated optical nonlinearities, considerable power consumption of analog-to-digital converters (ADCs) for downstream digital processing and vulnerability to noises and system errors(1,6-8). Here we propose an all-analog chip combining electronic and light computing (ACCEL). It has a systemic energy efficiency of 74.8 peta-operations per second per watt and a computing speed of 4.6 peta-operations per second (more than 99% implemented by optics), corresponding to more than three and one order of magnitude higher than state-of-the-art computing processors, respectively. After applying diffractive optical computing as an optical encoder for feature extraction, the light-induced photocurrents are directly used for further calculation in an integrated analog computing chip without the requirement of analog-to-digital converters, leading to a low computing latency of 72 ns for each frame. With joint optimizations of optoelectronic computing and adaptive training, ACCEL achieves competitive classification accuracies of 85.5%, 82.0% and 92.6%, respectively, for Fashion-MNIST, 3-class ImageNet classification and time-lapse video recognition task experimentally, while showing superior system robustness in low-light conditions (0.14 fJ mu m(-2) each frame). ACCEL can be used across a broad range of applications such as wearable devices, autonomous driving and industrial inspections.
引用
收藏
页码:48 / +
页数:23
相关论文
共 50 条
[1]   Human action recognition with a large-scale brain-inspired photonic computer [J].
Antonik, Piotr ;
Marsal, Nicolas ;
Brunner, Daniel ;
Rontani, Damien .
NATURE MACHINE INTELLIGENCE, 2019, 1 (11) :530-537
[2]   An on-chip photonic deep neural network for image classification [J].
Ashtiani, Farshid ;
Geers, Alexander J. ;
Aflatouni, Firooz .
NATURE, 2022, 606 (7914) :501-+
[3]   Smart Guiding Glasses for Visually Impaired People in Indoor Environment [J].
Bai, Jinqiang ;
Lian, Shiguo ;
Liu, Zhaoxiang ;
Wang, Kai ;
Liu, Dijun .
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2017, 63 (03) :258-266
[4]   Parallel photonic information processing at gigabyte per second data rates using transient states [J].
Brunner, Daniel ;
Soriano, Miguel C. ;
Mirasso, Claudio R. ;
Fischer, Ingo .
NATURE COMMUNICATIONS, 2013, 4
[5]   Reinforcement learning in a large-scale photonic recurrent neural network [J].
Bueno, J. ;
Maktoobi, S. ;
Froehly, L. ;
Fischer, I. ;
Jacquot, M. ;
Larger, L. ;
Brunner, D. .
OPTICA, 2018, 5 (06) :756-760
[6]   Deep Optics for Monocular Depth Estimation and 3D Object Detection [J].
Chang, Julie ;
Wetzstein, Gordon .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :10192-10201
[7]   Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification [J].
Chang, Julie ;
Sitzmann, Vincent ;
Dun, Xiong ;
Heidrich, Wolfgang ;
Wetzstein, Gordon .
SCIENTIFIC REPORTS, 2018, 8
[8]   Photonic unsupervised learning variational autoencoder for high-throughput and low-latency image transmission [J].
Chen, Yitong ;
Zhou, Tiankuang ;
Wu, Jiamin ;
Qiao, Hui ;
Lin, Xing ;
Fang, Lu ;
Dai, Qionghai .
SCIENCE ADVANCES, 2023, 9 (07)
[9]  
Clanuwat T., 2018, PREPRINT
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848