COMMON FIXED POINT THEOREMS OF TWO FINITE FAMILIES OF ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN HYPERBOLIC SPACES

被引:1
作者
Nuntadilok, B. [1 ]
Kingkam, P. [2 ]
Nantadilok, J. [2 ]
机构
[1] Maejo Univ, Fac Sci, Dept Math, Chiangmai, Thailand
[2] Lampang Rajabhat Univ, Fac Sci, Dept Math, Lampang, Thailand
来源
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS | 2023年 / 2023卷 / 01期
关键词
asymptotically quasi-nonexpansive mapping; CAT(0) space; Implicit algorithm; Hyperbolic space; STRONG-CONVERGENCE; ITERATIONS; SCHEME; WEAK;
D O I
10.23952/jnfa.2023.27
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish strong convergence theorems via an implicit algorithm for two finite fam-ilies of uniformly L-Lipschitzian asymptotically quasi-nonexpansive maps in hyperbolic spaces. We prove some results concerning Delta-convergence as well as strong convergence of the implicit algorithm. Our results are the generalization of some recent results in CAT(0) spaces, uniformly convex Banach spaces, and hyperbolic spaces.
引用
收藏
页数:15
相关论文
共 33 条
[1]   ON THE EXISTENCE OF BEST PROXIMITY POINTS OF MULTI-VALUED MAPPINGS IN CAT(0) SPACES [J].
Amnuaykarn, K. ;
Kumam, P. ;
Nantadilok, J. .
JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021, 2021
[2]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[3]   KRASNOSELSKI-MANN ITERATIONS IN NORMED SPACES [J].
BORWEIN, J ;
REICH, S ;
SHAFRIR, I .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1992, 35 (01) :21-28
[4]  
Bose S C., 1985, J. Math. Phys. Sci, V19, P503
[5]   SPACES WITH NON-POSITIVE CURVATURE [J].
BUSEMANN, H .
ACTA MATHEMATICA, 1948, 80 (04) :259-310
[6]   An example on the Mann iteration method for Lipschitz pseudocontractions [J].
Chidume, CE ;
Mutangadura, SA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (08) :2359-2363
[7]   Iterative processes for common fixed points of two different families of mappings with applications [J].
Cho, Sun Young ;
Qin, Xiaolong ;
Kang, Shin Min .
JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (04) :1429-1446
[8]  
DAS G, 1986, INDIAN J PURE AP MAT, V17, P1263
[9]   On Δ-convergence theorems in CAT(0) spaces [J].
Dhompongsa, S. ;
Panyanak, B. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) :2572-2579
[10]  
GOEBEL K, 1984, SERIES MONOGRAPHS TX, V83