Proteomic analysis of leaves and roots during drought stress and recovery in Setaria italica L.

被引:5
|
作者
Gao, Hui [1 ,2 ]
Ge, Weina [3 ]
Bai, Lin [4 ,5 ]
Zhang, Ting [2 ]
Zhao, Ling [2 ]
Li, Jingshi [1 ]
Shen, Jiangjie [1 ]
Xu, Ningwei [6 ]
Zhang, Haoshan [2 ]
Wang, Genping [2 ]
Lin, Xiaohu [1 ]
机构
[1] Hebei Normal Univ Sci & Technol, Coll Marine Resources & Environm, Dept Life Sci & Technol, Hebei Key Lab Crop Stress Biol, Qinhuangdao, Hebei, Peoples R China
[2] Hebei Acad Agr & Forestry Sci, Minist Agr & Rural Affairs, Inst Millet Crops, Key Lab Genet Improvement & Utilizat Featured Coar, Shijiazhuang, Peoples R China
[3] North China Univ Sci & Technol, Coll Life Sci, Tangshan, Peoples R China
[4] Fudan Univ, State Key Lab Genet Engn, Shanghai, Peoples R China
[5] Fudan Univ, Inst Biomed Sci, Collaborat Innovat Ctr Genet & Dev, Sch Life Sci, Shanghai, Peoples R China
[6] Hebei Agr Univ, Coll Landscape & Tourism, Baoding, Peoples R China
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 14卷
基金
国家重点研发计划;
关键词
drought stress; leaf; root; proteomic; Setaria italica L; GENE-EXPRESSION; SIGNAL-TRANSDUCTION; IMPROVES DROUGHT; PLANT-RESPONSES; RNA HELICASE; ARABIDOPSIS; TOLERANCE; SALT; LEAF; PROTEIN;
D O I
10.3389/fpls.2023.1240164
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is a major environmental factor that limits agricultural crop productivity and threatens food security. Foxtail millet is a model crop with excellent abiotic stress tolerance and is consequently an important subject for obtaining a better understanding of the molecular mechanisms underlying plant responses to drought and recovery. Here the physiological and proteomic responses of foxtail millet (cultivar Yugu1) leaves and roots to drought treatments and recovery were evaluated. Drought-treated foxtail millet exhibited increased relative electrolyte leakage and decreased relative water content and chlorophyll content compared to control and rewatering plants. A global analysis of protein profiles was evaluated for drought-treated and recovery treatment leaves and roots. We also identified differentially abundant proteins in drought and recovery groups, enabling comparisons between leaf and root tissue responses to the conditions. The principal component analysis suggested a clear distinction between leaf and root proteomes for the drought-treated and recovery treatment plants. Gene Ontology enrichment and co-expression analyses indicated that the biological responses of leaves differed from those in roots after drought and drought recovery. These results provide new insights and data resources to investigate the molecular basis of tissue-specific functional responses of foxtail millet during drought and recovery, thereby significantly informing crop breeding.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.)
    Tamburino, Rachele
    Vitale, Monica
    Ruggiero, Alessandra
    Sassi, Mauro
    Sannino, Lorenza
    Arena, Simona
    Costa, Antonello
    Batelli, Giorgia
    Zambrano, Nicola
    Scaloni, Andrea
    Grillo, Stefania
    Scotti, Nunzia
    BMC PLANT BIOLOGY, 2017, 17
  • [32] Proteomic Analysis: Explosive Salt Accumulation in Leaves of Morus alba L. under Salt Stress
    Yang, Jiajun
    Wu, Yongbo
    FORESTS, 2021, 12 (10):
  • [33] Growth Responses of Indonesian Foxtail Millet (Setaria italica (L.) Beauv.) to Cadmium Stress
    Jadid, Nurul
    Puspaningtyas, Ira
    Jannah, Adillatul Lathiifatun
    Safitri, Chusnul Eka
    Hutahuruk, Vidya Hana Dameria
    AIR SOIL AND WATER RESEARCH, 2022, 15
  • [34] Comparative transcriptome analysis of genes involved in the drought stress response of two peanut (Arachis hypogaea L.) varieties
    Jiang, Chunji
    Li, Xinlin
    Zou, Jixiang
    Ren, Jingyao
    Jin, Chunyi
    Zhang, He
    Yu, Haiqiu
    Jin, Hua
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [35] PHENOLIC COMPOUNDS AND PROPERTIES OF ANTIOXIDANTS IN GRAPEVINE ROOTS (VITIS VINIFERA L.) UNDER DROUGHT STRESS FOLLOWED BY RECOVERY
    Weidner, Stanislaw
    Karolak, Monika
    Karamac, Magdalena
    Kosinska, Agnieszka
    Amarowicz, Ryszard
    ACTA SOCIETATIS BOTANICORUM POLONIAE, 2009, 78 (02) : 97 - 103
  • [36] Proteomic Analysis of Heat Stress Response in Leaves of Radish (Raphanus sativus L.)
    Zhang, Yanyu
    Xu, Liang
    Zhu, Xianwen
    Gong, Yiqin
    Xiang, Fei
    Sun, Xiaochuan
    Liu, Liwang
    PLANT MOLECULAR BIOLOGY REPORTER, 2013, 31 (01) : 195 - 203
  • [37] Antioxidative system's responses in the leaves of six Caragana species during drought stress and recovery
    Kang, Hong-Mei
    Chen, Kang
    Bai, Juan
    Wang, Gang
    ACTA PHYSIOLOGIAE PLANTARUM, 2012, 34 (06) : 2145 - 2154
  • [38] Comparative Proteomic Analysis of Soybean Leaves and Roots by iTRAQ Provides Insights into Response Mechanisms to Short-Term Salt Stress
    Ji, Wei
    Cong, Ru
    Li, Sheng
    Li, Rui
    Qin, Zhiwei
    Li, Yanjun
    Zhou, Xiaolin
    Chen, Sixue
    Li, Jing
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [39] Metabolic and Transcriptional Analysis Reveals Flavonoid Involvement in the Drought Stress Response of Mulberry Leaves
    Chen, Guo
    Li, Dong
    Yao, Pei
    Chen, Fengyao
    Yuan, Jianglian
    Ma, Bi
    Yang, Zhen
    Ding, Biyue
    He, Ningjia
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (13)
  • [40] Changes in the proteome of grapevine leaves (Vitis vinifera L.) during long-term drought stress
    Krol, Angelika
    Weidner, Stanislaw
    JOURNAL OF PLANT PHYSIOLOGY, 2017, 211 : 114 - 126