Proteomic analysis of leaves and roots during drought stress and recovery in Setaria italica L.

被引:7
作者
Gao, Hui [1 ,2 ]
Ge, Weina [3 ]
Bai, Lin [4 ,5 ]
Zhang, Ting [2 ]
Zhao, Ling [2 ]
Li, Jingshi [1 ]
Shen, Jiangjie [1 ]
Xu, Ningwei [6 ]
Zhang, Haoshan [2 ]
Wang, Genping [2 ]
Lin, Xiaohu [1 ]
机构
[1] Hebei Normal Univ Sci & Technol, Coll Marine Resources & Environm, Dept Life Sci & Technol, Hebei Key Lab Crop Stress Biol, Qinhuangdao, Hebei, Peoples R China
[2] Hebei Acad Agr & Forestry Sci, Minist Agr & Rural Affairs, Inst Millet Crops, Key Lab Genet Improvement & Utilizat Featured Coar, Shijiazhuang, Peoples R China
[3] North China Univ Sci & Technol, Coll Life Sci, Tangshan, Peoples R China
[4] Fudan Univ, State Key Lab Genet Engn, Shanghai, Peoples R China
[5] Fudan Univ, Inst Biomed Sci, Collaborat Innovat Ctr Genet & Dev, Sch Life Sci, Shanghai, Peoples R China
[6] Hebei Agr Univ, Coll Landscape & Tourism, Baoding, Peoples R China
基金
国家重点研发计划;
关键词
drought stress; leaf; root; proteomic; Setaria italica L; GENE-EXPRESSION; SIGNAL-TRANSDUCTION; IMPROVES DROUGHT; PLANT-RESPONSES; RNA HELICASE; ARABIDOPSIS; TOLERANCE; SALT; LEAF; PROTEIN;
D O I
10.3389/fpls.2023.1240164
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought is a major environmental factor that limits agricultural crop productivity and threatens food security. Foxtail millet is a model crop with excellent abiotic stress tolerance and is consequently an important subject for obtaining a better understanding of the molecular mechanisms underlying plant responses to drought and recovery. Here the physiological and proteomic responses of foxtail millet (cultivar Yugu1) leaves and roots to drought treatments and recovery were evaluated. Drought-treated foxtail millet exhibited increased relative electrolyte leakage and decreased relative water content and chlorophyll content compared to control and rewatering plants. A global analysis of protein profiles was evaluated for drought-treated and recovery treatment leaves and roots. We also identified differentially abundant proteins in drought and recovery groups, enabling comparisons between leaf and root tissue responses to the conditions. The principal component analysis suggested a clear distinction between leaf and root proteomes for the drought-treated and recovery treatment plants. Gene Ontology enrichment and co-expression analyses indicated that the biological responses of leaves differed from those in roots after drought and drought recovery. These results provide new insights and data resources to investigate the molecular basis of tissue-specific functional responses of foxtail millet during drought and recovery, thereby significantly informing crop breeding.
引用
收藏
页数:15
相关论文
共 103 条
[1]   Proteomic analysis of rice leaf sheath during drought stress [J].
Ali, GM ;
Komatsu, S .
JOURNAL OF PROTEOME RESEARCH, 2006, 5 (02) :396-403
[2]   Reference genome sequence of the model plant Setaria [J].
Bennetzen, Jeffrey L. ;
Schmutz, Jeremy ;
Wang, Hao ;
Percifield, Ryan ;
Hawkins, Jennifer ;
Pontaroli, Ana C. ;
Estep, Matt ;
Feng, Liang ;
Vaughn, Justin N. ;
Grimwood, Jane ;
Jenkins, Jerry ;
Barry, Kerrie ;
Lindquist, Erika ;
Hellsten, Uffe ;
Deshpande, Shweta ;
Wang, Xuewen ;
Wu, Xiaomei ;
Mitros, Therese ;
Triplett, Jimmy ;
Yang, Xiaohan ;
Ye, Chu-Yu ;
Mauro-Herrera, Margarita ;
Wang, Lin ;
Li, Pinghua ;
Sharma, Manoj ;
Sharma, Rita ;
Ronald, Pamela C. ;
Panaud, Olivier ;
Kellogg, Elizabeth A. ;
Brutnell, Thomas P. ;
Doust, Andrew N. ;
Tuskan, Gerald A. ;
Rokhsar, Daniel ;
Devos, Katrien M. .
NATURE BIOTECHNOLOGY, 2012, 30 (06) :555-+
[3]   Physiological and Proteomic Changes in the Apoplast Accompany Leaf Senescence in Arabidopsis [J].
Borniego, Maria L. ;
Molina, Maria C. ;
Guiamet, Juan J. ;
Martinez, Dana E. .
FRONTIERS IN PLANT SCIENCE, 2020, 10
[4]   Modulation of ethylene responses affects plant salt-stress responses [J].
Cao, Wan-Hong ;
Liu, Jun ;
He, Xin-Jian ;
Mu, Rui-Ling ;
Zhou, Hua-Lin ;
Chen, Shou-Yi ;
Zhang, Jin-Song .
PLANT PHYSIOLOGY, 2007, 143 (02) :707-719
[5]   TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data [J].
Chen, Chengjie ;
Chen, Hao ;
Zhang, Yi ;
Thomas, Hannah R. ;
Frank, Margaret H. ;
He, Yehua ;
Xia, Rui .
MOLECULAR PLANT, 2020, 13 (08) :1194-1202
[6]   Genotypic Variation in Growth and Physiological Response to Drought Stress and Re-Watering Reveals the Critical Role of Recovery in Drought Adaptation in Maize Seedlings [J].
Chen, Daoqian ;
Wang, Shiwen ;
Cao, Beibei ;
Cao, Dan ;
Leng, Guohui ;
Li, Hongbing ;
Yin, Lina ;
Shan, Lun ;
Deng, Xiping .
FRONTIERS IN PLANT SCIENCE, 2016, 6
[7]   Protein kinases in plant responses to drought, salt, and cold stress [J].
Chen, Xuexue ;
Ding, Yanglin ;
Yang, Yongqing ;
Song, Chunpeng ;
Wang, Baoshan ;
Yang, Shuhua ;
Guo, Yan ;
Gong, Zhizhong .
JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2021, 63 (01) :53-78
[8]   Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants [J].
Cho, Seok Keun ;
Kim, Jee Eun ;
Park, Jong-A ;
Eom, Tae Jin ;
Kim, Woo Taek .
FEBS LETTERS, 2006, 580 (13) :3136-3144
[9]   Drought-Induced Oxidative Stress in Pearl Millet (Cenchrus americanus L.) at Seedling Stage: Survival Mechanisms through Alteration of Morphophysiological and Antioxidants Activity [J].
Choudhury, Shuvasish ;
Moulick, Debojyoti ;
Ghosh, Dibakar ;
Soliman, Mohamed ;
Alkhedaide, Adel ;
Gaber, Ahmed ;
Hossain, Akbar .
LIFE-BASEL, 2022, 12 (08)
[10]   Generation of active pools of abscisic acid revealed by in vivo Imaging of water-stressed Arabidopsis [J].
Christmann, A ;
Hoffmann, T ;
Teplova, I ;
Grill, E ;
Müller, A .
PLANT PHYSIOLOGY, 2005, 137 (01) :209-219