Autonomous artificial intelligence increases real-world specialist clinic productivity in a cluster-randomized trial

被引:20
作者
Abramoff, Michael D. [1 ,2 ,3 ,4 ,5 ]
Whitestone, Noelle [6 ]
Patnaik, Jennifer L. [6 ,7 ]
Rich, Emily [6 ,8 ]
Ahmed, Munir [9 ]
Husain, Lutful [9 ]
Hassan, Mohammad Yeadul [9 ]
Tanjil, Md. Sajidul Huq [10 ]
Weitzman, Dena [2 ]
Dai, Tinglong [11 ,12 ,13 ]
Wagner, Brandie D. [7 ,14 ]
Cherwek, David H. [6 ]
Congdon, Nathan [6 ,8 ,15 ]
Islam, Khairul [10 ]
机构
[1] Univ Iowa, Iowa City, IA 52242 USA
[2] Digital Diagnost Inc, Coralville, IA 52242 USA
[3] Iowa City Vet Affairs Med Ctr, Iowa City, IA 52242 USA
[4] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[5] Univ Iowa, Dept Elect & Comp Engn, Iowa City, IA 52242 USA
[6] Orbis Int, New York, NY USA
[7] Univ Colorado, Sch Med, Dept Ophthalmol, Aurora, CO USA
[8] Queens Univ Belfast, Ctr Publ Hlth, Belfast, North Ireland
[9] Orbis Bangladesh, Dhaka, Bangladesh
[10] Deep Eye Care Fdn, Rangpur, Bangladesh
[11] Johns Hopkins Univ, Carey Business Sch, Baltimore, MD USA
[12] Johns Hopkins Univ, Hopkins Business Hlth Initiat, Baltimore, MD USA
[13] Johns Hopkins Univ, Sch Nursing, Baltimore, MD USA
[14] Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO USA
[15] Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, Guangzhou, Peoples R China
关键词
HEALTH-CARE;
D O I
10.1038/s41746-023-00931-7
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Autonomous artificial intelligence (AI) promises to increase healthcare productivity, but real-world evidence is lacking. We developed a clinic productivity model to generate testable hypotheses and study design for a preregistered cluster-randomized clinical trial, in which we tested the hypothesis that a previously validated US FDA-authorized AI for diabetic eye exams increases clinic productivity (number of completed care encounters per hour per specialist physician) among patients with diabetes. Here we report that 105 clinic days are cluster randomized to either intervention (using AI diagnosis; 51 days; 494 patients) or control (not using AI diagnosis; 54 days; 499 patients). The prespecified primary endpoint is met: AI leads to 40% higher productivity (1.59 encounters/hour, 95% confidence interval [CI]: 1.37-1.80) than control (1.14 encounters/hour, 95% CI: 1.02-1.25), p < 0.00; the secondary endpoint (productivity in all patients) is also met. Autonomous AI increases healthcare system productivity, which could potentially increase access and reduce health disparities. ClinicalTrials.gov NCT05182580.
引用
收藏
页数:8
相关论文
共 34 条
  • [1] Considerations for addressing bias in artificial intelligence for health equity
    Abramoff, Michael D.
    Tarver, Michelle E.
    Loyo-Berrios, Nilsa
    Trujillo, Sylvia
    Char, Danton
    Obermeyer, Ziad
    Eydelman, Malvina B.
    Maisel, William H.
    [J]. NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [2] A reimbursement framework for artificial intelligence in healthcare
    Abramoff, Michael D.
    Roehrenbeck, Cybil
    Trujillo, Sylvia
    Goldstein, Juli
    Graves, Anitra S.
    Repka, Michael X.
    Silva, Ezequiel Zeke, III
    [J]. NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [3] Foundational Considerations for Artificial Intelligence Using Ophthalmic Images
    Abramoff, Michael D.
    Cunningham, Brad
    Patel, Bakul
    Eydelman, Malvina B.
    Leng, Theodore
    Sakamoto, Taiji
    Blodi, Barbara
    Grenon, S. Marlene
    Wolf, Risa M.
    Manrai, Arjun K.
    Ko, Justin M.
    Chiang, Michael F.
    Char, Danton
    [J]. OPHTHALMOLOGY, 2022, 129 (02) : E14 - E32
  • [4] Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
    Abramoff, Michael D.
    Lavin, Philip T.
    Birch, Michele
    Shah, Nilay
    Folk, James C.
    [J]. NPJ DIGITAL MEDICINE, 2018, 1
  • [5] Approach for a Clinically Useful Comprehensive Classification of Vascular and Neural Aspects of Diabetic Retinal Disease
    Abramoff, Michael D.
    Fort, Patrice E.
    Han, Ian C.
    Jayasundera, K. Thiran
    Sohn, Elliott H.
    Gardner, Thomas W.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (01) : 519 - 527
  • [6] American Academy of Ophthalmology Retina/Vitreous Panel & Hoskins Center for Quality Eye Care, 2016, Preferred Practice Patterns: Diabetic Retinopathy
  • [7] [Anonymous], 1991, OPHTHALMOLOGY, V98, P823
  • [8] [Anonymous], 2018, FDA Permits Marketing of Artificial Intelligence-based Device to Detect Certain Diabetes-related Eye Problems
  • [9] PRODUCTIVITY AND LIVING STANDARDS
    Backman, Jules
    Gainsbrugh, M. R.
    [J]. INDUSTRIAL & LABOR RELATIONS REVIEW, 1949, 2 (02): : 163 - 194
  • [10] Baumol WJ., 2012, COST DIS WHY COMPUTE