Accurate energy barriers for catalytic reaction pathways: an automatic training protocol for machine learning force fields

被引:41
作者
Schaaf, Lars L. [1 ]
Fako, Edvin [2 ]
De, Sandip [2 ]
Schaefer, Ansgar [2 ]
Csanyi, Gabor [1 ]
机构
[1] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
[2] BASF SE, Carl Bosch Str 38, D-67056 Ludwigshafen, Germany
基金
英国工程与自然科学研究理事会;
关键词
METHANOL SYNTHESIS; CO2; HYDROGENATION; MECHANISM; SURFACE; PSEUDOPOTENTIALS; MICROKINETICS; ADSORPTION; MINIMUM; SITE; DFT;
D O I
10.1038/s41524-023-01124-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We introduce a training protocol for developing machine learning force fields (MLFFs), capable of accurately determining energy barriers in catalytic reaction pathways. The protocol is validated on the extensively explored hydrogenation of carbon dioxide to methanol over indium oxide. With the help of active learning, the final force field obtains energy barriers within 0.05 eV of Density Functional Theory. Thanks to the computational speedup, not only do we reduce the cost of routine in-silico catalytic tasks, but also find an alternative path for the previously established rate-limiting step, with a 40% reduction in activation energy. Furthermore, we illustrate the importance of finite temperature effects and compute free energy barriers. The transferability of the protocol is demonstrated on the experimentally relevant, yet unexplored, top-layer reduced indium oxide surface. The ability of MLFFs to enhance our understanding of extensively studied catalysts underscores the need for fast and accurate alternatives to direct ab-initio simulations.
引用
收藏
页数:10
相关论文
共 87 条
[1]   Machine Learning a General-Purpose Interatomic Potential for Silicon [J].
Bartok, Albert P. ;
Kermode, James ;
Bernstein, Noam ;
Csanyi, Gabor .
PHYSICAL REVIEW X, 2018, 8 (04)
[2]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[3]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[4]  
Batatia I, 2022, ADV NEUR IN
[5]   E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials [J].
Batzner, Simon ;
Musaelian, Albert ;
Sun, Lixin ;
Geiger, Mario ;
Mailoa, Jonathan P. ;
Kornbluth, Mordechai ;
Molinari, Nicola ;
Smidt, Tess E. ;
Kozinsky, Boris .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)
[7]   First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems [J].
Behler, Joerg .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (42) :12828-12840
[8]  
Berne B.J., 1998, Classical and Quantum Dynamics in Condensed Phase Simulations
[9]   De novo exploration and self-guided learning of potential-energy surfaces [J].
Bernstein, Noam ;
Csanyi, Gabor ;
Deringer, Volker L. .
NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
[10]   Hydrogen on In2O3: Reducibility, Bonding, Defect Formation, and Reactivity [J].
Bielz, Thomas ;
Lorenz, Harald ;
Jochum, Wilfrid ;
Kaindl, Reinhard ;
Klauser, Frederik ;
Kloetzer, Bernhard ;
Penner, Simon .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (19) :9022-9029