Integrated Biorefinery Design with Techno-Economic and Life Cycle Assessment Tools in Polyhydroxyalkanoates Processing

被引:13
作者
Andhalkar, Vaibhav Vilas [1 ]
Foong, Shin Ying [2 ]
Kee, Seng Hon [3 ]
Lam, Su Shiung [2 ,4 ,5 ]
Chan, Yi Herng [6 ]
Djellabi, Ridha [1 ]
Bhubalan, Kesaven [3 ]
Medina, Francesc [1 ]
Constanti, Magdalena [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Quim, Tarragona 43007, Spain
[2] Univ Malaysia Terengganu, Higher Inst Ctr Excellence HICoE, Inst Trop Aquaculture & Fisheries AKUATROP, Terengganu 21030, Malaysia
[3] Univ Malaysia Terengganu, Fac Sci & Marine Environm, Kuala Nerus 21030, Malaysia
[4] Saveetha Univ, Saveetha Inst Med & Tech Sci, Ctr Transdisciplinary Res, Chennai 602105, Tamil Nadu, India
[5] Chandigarh Univ, Univ Ctr Res & Dev, Dept Chem, Mohali 140413, Punjab, India
[6] PETRONAS Res Sdn Bhd PRSB, Jalan Ayer Itam, Kawasan Inst Bangi, Lot 3288 & 3289,Off Jalan Ayer Itam, Kajang 43000, Selangor, Malaysia
关键词
integrated biorefinery; life cycle assessment; polyhydroxyalkanoates; techno-economic analysis; MICROBIAL CELL FACTORIES; MIXED-CULTURE; BIOHYDROGEN PRODUCTION; PHA BIOPOLYESTERS; ESCHERICHIA-COLI; WASTE; COPRODUCTION; FERMENTATION; CHALLENGES; ACID;
D O I
10.1002/mame.202300100
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To support and move toward a sustainable bioeconomy, the production of polyhydroxyalkanoates (PHAs) using renewable biomass has acquired more attention. However, expensive biomass pretreatment and low yield of PHAs pose significant disadvantages in its large-scale production. To overcome such limitations, the most recent advances in metabolic engineering strategies used to develop high-performance strains that are leading to a new manufacturing concept converting biomass to PHAs with co-products such as amino acids, proteins, biohydrogen, biosurfactants, and various fine chemicals are critically summarized. This review article presents a comprehensive roadmap that highlights the integrated biorefinery strategies, lifecycle analysis, and techno-economic assessment for sustainable and economic PHAs production. Finally, current and future challenges that must be addressed to transfer this technology to real-world applications are reviewed.
引用
收藏
页数:20
相关论文
共 139 条
[91]   Food waste conversion to microbial polyhydroxyalkanoates [J].
Nielsen, Chad ;
Rahman, Asif ;
Rehman, Asad Ur ;
Walsh, Marie K. ;
Miller, Charles D. .
MICROBIAL BIOTECHNOLOGY, 2017, 10 (06) :1338-1352
[92]   How sustainable are biopolymers? Findings from a life cycle assessment of polyhydroxyalkanoate production from rapeseed-oil derivatives [J].
Nitkiewicz, Tomasz ;
Wojnarowska, Magdalena ;
Soltysik, Mariusz ;
Kaczmarski, Adam ;
Witko, Tomasz ;
Ingrao, Carlo ;
Guzik, Maciej .
SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 749
[93]   Polyhydroxyalkanoate (PHA) production via resource recovery from industrial waste streams: A review of techniques and perspectives [J].
Novelli, Laura De Donno ;
Sayavedra, Sarah Moreno ;
Rene, Eldon R. .
BIORESOURCE TECHNOLOGY, 2021, 331
[94]   Use of Lignocellulosic Materials for PHA Production [J].
Obruca, S. ;
Benesova, P. ;
Marsalek, L. ;
Marova, I. .
CHEMICAL AND BIOCHEMICAL ENGINEERING QUARTERLY, 2015, 29 (02) :135-144
[95]   Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics [J].
Obruca, Stanislav ;
Dvorak, Pavel ;
Sedlacek, Petr ;
Koller, Martin ;
Sedlar, Karel ;
Pernicova, Iva ;
Safranek, David .
BIOTECHNOLOGY ADVANCES, 2022, 58
[96]   Economic analysis of polyhydroxybutyrate production by Cupriavidus necator using different routes for product recovery [J].
Pavan, Felipe A. ;
Junqueira, Tassia L. ;
Watanabe, Marcos D. B. ;
Bonomi, Antonio ;
Quines, Luci K. ;
Schmidell, Willibaldo ;
de Aragao, Glaucia M. F. .
BIOCHEMICAL ENGINEERING JOURNAL, 2019, 146 :97-104
[97]   A sustainable approach for the downstream processing of bacterial polyhydroxyalkanoates: State-of-the-art and latest developments [J].
Perez-Rivero, Cristina ;
Pablo Lopez-Gomez, J. ;
Roy, Ipsita .
BIOCHEMICAL ENGINEERING JOURNAL, 2019, 150
[98]   Strategy for biological co-production of levulinic acid and polyhydroxyalkanoates by using mixed microbial cultures fed with synthetic hemicellulose hydrolysate [J].
Pinto-Ibieta, F. ;
Cea, M. ;
Cabrera, F. ;
Abanto, M. ;
Felissia, F. E. ;
Area, M. C. ;
Ciudad, G. .
BIORESOURCE TECHNOLOGY, 2020, 309 (309)
[99]   Lignocellulosic biomass as an optimistic feedstock for the production of biofuels as valuable energy source: Techno-economic analysis, Environmental Impact Analysis, Breakthrough and Perspectives [J].
Preethi ;
Gunasekaran, M. ;
Kumar, Gopalakrishnan ;
Karthikeyan, Obulisamy Parthiba ;
Varjani, Sunita ;
Banu, Rajesh J. .
ENVIRONMENTAL TECHNOLOGY & INNOVATION, 2021, 24
[100]   The path forward for biofuels and biomaterials [J].
Ragauskas, AJ ;
Williams, CK ;
Davison, BH ;
Britovsek, G ;
Cairney, J ;
Eckert, CA ;
Frederick, WJ ;
Hallett, JP ;
Leak, DJ ;
Liotta, CL ;
Mielenz, JR ;
Murphy, R ;
Templer, R ;
Tschaplinski, T .
SCIENCE, 2006, 311 (5760) :484-489