MULTIPLE SOLUTIONS FOR NONHOMOGENEOUS QUASILINEAR SCHRoDINGER-POISSON SYSTEM

被引:3
|
作者
Huang, Lanxin [1 ]
Su, Jiabao [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2023年 / 13卷 / 03期
基金
中国国家自然科学基金;
关键词
Nonhomogeneous quasilinear Schrodinger-Poisson system; vari-ational methods; multiple solutions; GROUND-STATE SOLUTIONS; SOLITARY WAVES; ELLIPTIC-EQUATIONS; MAXWELL; EXISTENCE;
D O I
10.11948/20220404
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonhomogeneous quasilinear Schrodinger-Poisson system { - increment pu + TuTp-2u + & lambda;& phi;TuTp-2u = TuTq-2u + h(x) in R3, - increment & phi; = TuTp in R3, where 1 < p < 3, p < q < p* = 3p 3-p , increment pu = div(T backward difference uTp-2 backward difference u), & lambda; > 0 and h = 0. Under suitable assumptions on h, the Ekeland's variational principle and the mountain pass theorem are applied to establish the existence of mul-tiple solutions for this system. To the best of our knowledge, this paper is one of the first contributions to the study of the nonhomogeneous quasilinear Schrodinger-Poisson system.
引用
收藏
页码:1597 / 1612
页数:16
相关论文
共 50 条
  • [21] Multiple solutions for a nonlinear Schrodinger-Poisson system with sign-changing potential
    Liu, Hongliang
    Chen, Haibo
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (07) : 1405 - 1416
  • [22] Existence of multiple nontrivial solutions for a Schrodinger-Poisson system
    Chen, Shaowei
    Wang, Conglei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 411 (02) : 787 - 793
  • [23] Multiple solutions for a class of quasilinear Schrodinger-Poisson system in R3 with critical nonlinearity and zero mass
    Wei, Chongqing
    Li, Anran
    Zhao, Leiga
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (05)
  • [24] Multiple Solutions for a Class of Fractional Schrodinger-Poisson System
    Chen, Lizhen
    Li, Anran
    Wei, Chongqing
    JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [25] Multibump solutions for nonlinear Schrodinger-Poisson systems
    Yu, Mingzhu
    Chen, Haibo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) : 4518 - 4529
  • [26] Quasilinear asymptotically periodic Schrodinger-Poisson system with subcritical growth
    Zhang, Jing
    Guo, Lifeng
    Yang, Miaomiao
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [27] MULTIPLE POSITIVE SOLUTIONS FOR THE SCHRODINGER-POISSON EQUATION WITH CRITICAL GROWTH
    Chen, Caixia
    Qian, Aixia
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2022, 5 (02): : 113 - 128
  • [28] INFINITELY MANY SOLUTIONS FOR A SCHRODINGER-POISSON SYSTEM WITH CONCAVE AND CONVEX NONLINEARITIES
    Sun, Mingzheng
    Su, Jiabao
    Zhao, Leiga
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (01) : 427 - 440
  • [29] Two nontrivial solutions for a nonhomogeneous fractional Schrodinger-Poisson equation in R3
    Jiang, Ruiting
    Zhai, Chengbo
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01):
  • [30] Multiple solutions for fractional Schrodinger-Poisson system with critical or supercritical nonlinearity
    Gu, Guangze
    Tang, Xianhua
    Shen, Jianxia
    APPLIED MATHEMATICS LETTERS, 2021, 111