Inferring Pyramidal Neuron Morphology using EAP Data

被引:0
作者
Chen, Ziao [1 ]
Carroll, Matthew [1 ]
Nair, Satish S. [1 ]
机构
[1] Univ Missouri, Elect Engn & Comp Sci, Columbia, MO 65211 USA
来源
2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER | 2023年
关键词
D O I
10.1109/NER52421.2023.10123903
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We report a computational algorithm that uses an inverse modeling scheme to infer neuron position and morphology of cortical pyramidal neurons using spatio-temporal extracellular action potential recordings.. We first develop a generic pyramidal neuron model with stylized morphology and active channels that could mimic the realistic electrophysiological dynamics of pyramidal cells from different cortical layers. The generic stylized single neuron model has adjustable parameters for soma location, and morphology and orientation of the dendrites. The ranges for the parameters were selected to include morphology of the pyramidal neuron types in the rodent primary motor cortex. We then developed a machine learning approach that uses the local field potential simulated from the stylized model for training a convolutional neural network that predicts the parameters of the stylized neuron model. Preliminary results suggest that the proposed methodology can reliably infer the key position and morphology parameters using the simulated spatio-temporal profile of EAP waveforms. We also provide partial support to validate the inference algorithm using in vivo data. Finally, we highlight the issues involved and ongoing work to improve the algorithm. These include enhancing prediction accuracies for the parameters including orientation. The goal is to then include inference of biophysics and connection information and develop an automated pipeline.
引用
收藏
页数:4
相关论文
共 13 条
[1]  
Chen ZA, 2021, I IEEE EMBS C NEUR E, P774, DOI [10.1109/ner49283.2021.9441161, 10.1109/NER49283.2021.9441161]
[2]   Gamma Oscillations in the Basolateral Amygdala: Biophysical Mechanisms and Computational Consequences [J].
Feng, Feng ;
Headley, Drew B. ;
Amir, Alon ;
Kanta, Asiliki ;
Chen, Ziao ;
Pare, Denis ;
Nair, Satish S. .
ENEURO, 2019, 6 (01)
[3]   Training deep neural density estimators to identify mechanistic models of neural dynamics [J].
Goncalves, Pedro J. ;
Lueckmann, Jan-Matthis ;
Deistler, Michael ;
Nonnenmacher, Marcel ;
Oecal, Kaan ;
Bassetto, Giacomo ;
Chintaluri, Chaitanya ;
Podlaski, William F. ;
Haddad, Sara A. ;
Vogels, Tim P. ;
Greenberg, David S. ;
Macke, Jakob H. .
ELIFE, 2020, 9
[4]   Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and Perisomatic Active Properties [J].
Hay, Etay ;
Hill, Sean ;
Schuermann, Felix ;
Markram, Henry ;
Segev, Idan .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (07)
[5]   An integrative model of the intrinsic hippocampal theta rhythm [J].
Hummos, Ali ;
Nair, Satish S. .
PLOS ONE, 2017, 12 (08)
[6]   Fully integrated silicon probes for high-density recording of neural activity [J].
Jun, James J. ;
Steinmetz, Nicholas A. ;
Siegle, Joshua H. ;
Denman, Daniel J. ;
Bauza, Marius ;
Barbarits, Brian ;
Lee, Albert K. ;
Anastassiou, Costas A. ;
Andrei, Alexandru ;
Aydin, Cagatay ;
Barbic, Mladen ;
Blanche, Timothy J. ;
Bonin, Vincent ;
Couto, Joao ;
Dutta, Barundeb ;
Gratiy, Sergey L. ;
Gutnisky, Diego A. ;
Hausser, Michael ;
Karsh, Bill ;
Ledochowitsch, Peter ;
Lopez, Carolina Mora ;
Mitelut, Catalin ;
Musa, Silke ;
Okun, Michael ;
Pachitariu, Marius ;
Putzeys, Jan ;
Rich, P. Dylan ;
Rossant, Cyrille ;
Sun, Wei-Lung ;
Svoboda, Karel ;
Carandini, Matteo ;
Harris, Kenneth D. ;
Koch, Christof ;
O'Keefe, John ;
Harris, Timothy D. .
NATURE, 2017, 551 (7679) :232-+
[7]   Properties of Layer 6 Pyramidal Neuron Apical Dendrites [J].
Ledergerber, Debora ;
Larkum, Matthew Evan .
JOURNAL OF NEUROSCIENCE, 2010, 30 (39) :13031-13044
[8]   Toward an Integration of Deep Learning and Neuroscience [J].
Marblestone, Adam H. ;
Wayne, Greg ;
Kording, Konrad P. .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
[9]   Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience [J].
McDougal, Robert A. ;
Morse, Thomas M. ;
Carnevale, Ted ;
Marenco, Luis ;
Wang, Rixin ;
Migliore, Michele ;
Miller, Perry L. ;
Shepherd, Gordon M. ;
Hines, Michael L. .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2017, 42 (01) :1-10
[10]  
Pachitariu M., 2016, BIORXIV, P061481, DOI [10.1101/061481, DOI 10.1101/061481]